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Global Nature of Dilute-to-Dense Transition of Granular Flows in a 2D Channel
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The dilute-to-dense transition of granular flow of particle size d0 is studied experimentally in a two-
dimensional channel (width D) with confined exit (width d). Our results show that with fixed d and D
there is a maximum inflow rate Qc above which the flow changes from dilute to dense and the outflow
rate hQ�t�i drops abruptly from Qc to a dense rate Qd. A rescaled critical rate qc is found to be a function
of a scaling variable � only: qc � F���, where � � d

d0
d

D�d . This form of � suggests that the dilute-to-
dense transition is a global property of the flow, unlike the jamming transition which depends only on
d
d0

. Furthermore, the transition is found to occur when the area fraction of particles near the exit
exceeds a critical value which is close to 0:65� 0:03.
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size of the system can induce the dilute-to-dense tran- which are stored in the hopper at the top of the channel.
The phenomena of crowding or jamming are common
experiences in our daily lives. However, advances in the
understanding of these processes have only begun re-
cently after the physics of granular materials have been
under intense investigations [1,2]. It is now believed that
the diverse phenomena of traffic flow, pedestrian flow,
and floating ice [3–5] are related to the nonlinear be-
haviors of granular materials which can exhibit both
solidlike and fluidlike behaviors [6–8]. These peculiar
properties [8,9] give rise to at least three important
‘‘states’’ in granular flows, namely, the dilute flow, dense
flow, and the jammed state. The phenomenon of crowding
can then be understood as a transition from dilute to
dense flows and that of jamming is a transition from
dense flows to a jammed phase.

Obviously, the nature and properties of these transi-
tions are governed by the interactions among the granular
particles in the flow. In principle, these transitions and
states can be well characterized when these interactions
are known such as in the cases of equilibrium systems
[10,11]. Unfortunately, since interactions among the
granular particles are highly nonlinear and characterized
by dissipations which can be density and even history
dependent, it is not surprising to find that these transitions
and their states are still not well understood. Recently,
there has been some progress in the understanding of the
transition from dense to jammed states [12,13] and even
an equilibriumlike jamming phase diagram has been
proposed [14–16]. However, still very little is known
about the dilute to density flow transition.

An important characteristic of the dense-to-jam tran-
sition is that there is usually only one dominant length
scale in the problem, namely, the size of the grains (d0)
[12]. In contrast, it seems that the global scale of the order
of the size of the system is important for the dilute-to-
dense transitions. For example, a small bottleneck of the
0031-9007=03=91(20)=204301(4)$20.00 
sition [17]. In this aspect, the dilute-to-dense transition
is similar to transitions in hydrodynamic flows. In the
case of hydrodynamic flows, it is well known that differ-
ent Reynolds numbers are associated with different flow
configurations to characterize the flow as laminar or
turbulent. The Reynolds number is a global parameter
which scales with the system sizes. Intuitively, in the
case of dilute-to-dense transitions, a similar global scal-
ing parameter might exist. If such a scaling parameter
can be found, its scaling form will probably provide a
better understanding of the nature of the dilute-to-dense
transitions.

In this Letter, we report our results on experiments
carried out in a 2D channel to look for a relation between
the dilute-to-dense transition and system parameters. We
find that the critical flow rate Qc at the transition can be
well characterized by the scaling variable � � d

d0
d

D�d
where the system parameters are the channel width (D),
the opening of the channel (d) and the diameter of the
grains (d0). Qc is the maximum dilute flow rate above
which the flow changes from dilute to dense. The scaled
critical flow rate qc� � Qc=�D=d0�� is found to be a func-
tion of a scaling variable � only as qc � F���. This form
of � suggests that the dilute-to-dense transition is a global
property of the flow, unlike the jamming transition which
depends only on d

d0
. Furthermore, the transition is found

to occur when the area fraction of particles near the exit
exceeds a critical value which is close to 0:65� 0:03.

Our experiments are performed in a two-dimensional
(2D) channel with an inclination angle of 20	. The 2D
channel is established on a metal plate between two glass
plates separated by specially shaped metal spacers to
form a test section and a hopper as shown in Fig. 1. The
gap between the two glass surfaces is kept at 1.2 mm
(2.2 mm) to ensure an almost single-layer flow of steel
beads of diameter d0 
 1� 0:01 mm (2� 0:01 mm)
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FIG. 2. At a given inflow rate Q0, the outflow behaves differ-
ently when the flow is dilute or dense. For a dilute flow, a
transition from dilute to dense occurs at a critical opening size
dc, and the outflow follows curve ABCDE. For a dense flow, as
d increases the flow follows curve DC and is extended to Awith
no abrupt change. For different Q0, the transition occurs at
different d, as shown by dashed lines. The curve BF determines
the optimal outflow rate at any given Q0. For clarity, only two
dilute-flow experimental data sets are shown as solid circles
and squares.

FIG. 1. (A) Top and side views of the inclined channel.
(B) Photos of dilute-to-dense flow transition in a time sequence
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The hopper, with an open angle of 60o, is connected to a
test section of width D 
 24 mm and length l 
 500 mm.
At the end of the test section, there is an exit of width d
which is controlled by micrometers to a precision of
0.01 mm. Granular flows in the test section are initiated
by allowing the steel beads in the hopper to fall by
gravity. A thin plate with a number of uniformly distrib-
uted holes is inserted close to the exit of the hopper to
control the inflow rate and ensure the uniformity of
particle distribution across the test section. The total
mass M of the beads falling out of the exit is measured
as a function of time t by an electronic balance with
sensitivity of 0.02 g and a weighing period of 0.02 s.
The flow rate Q�t� is obtained by the slope of the recorded
M�t�curve:

The flow in the test section initiated from the hopper is
dilute and accelerating. The typical velocity of the steel
beads close to the exit is 1:0� 0:1 m=s. Since d is smaller
than D, two wedges (heaps) will be formed at both sides
of the exit with a base length �D� d�=2. If the inflow rate
Q0 is small or d is not too small, there will be no net
accumulation of beads in the test section other than the
two wedges and hQ�t�i 
 Q0. This is the regime of dilute
flows as shown in (a) of Fig. 1(B). However, for a given
Q0, there will be a critical dc below which there will be
net accumulation of beads in the test section. In other
words, if d is decreased systematically, there will be a
sudden drop of Q�t� when dc is reached. This accumula-
tion of beads will proceed until the whole test section is
filled with beads and this is the regime of dense flows. The
process of this dilute-to-dense transition induced by re-
204301-2
ducing d is shown in Fig. 1(B), which is recorded by a
video camera.

Figure 2 shows the d dependence of hQ�t�i when d is
reduced or increased systematically for a given Q0. When
d is large (point A), hQ�t�i 
 Q0, the flow is dilute. It can
be seen that hQ�t�i remains practically independent of d
when d is larger than a critical size dc (A to B in Fig. 2).
When dc is reached, the dilute flow turns to dense flow
and the flow rate can be reduced instantaneously by
several times to drop from Q0 to Qd (B to C). After the
transition, Qd decreases monotonically with reducing d
(C to D). The flow jams when d is about the size of four-
particle diameters, where permanent arching occurs to
cause jamming of the flow [12] (D to E).When increasing
d from the jammed phase, the flow starts as dense flow,
and the rate hQ�t�i increases gradually with increasing d
until Qd reaches Q0 and turns back to dilute flow as
shown by triangle points in Fig. 2 (D through C to A).
There is no sudden increase of the flow rate at the tran-
sition from dense to dilute flow. We have checked that the
dense flow rate curve Qd�d� (the CD part of curve ACD)
follows the Beverloo empirical equation �d� kd0�3=2

with k 
 4 [18,19] and is independent of Q0.
If the experiment of Fig. 2 is repeated with differ-

ent Q0, a family of paths similar to ABCD of Fig. 2
will be formed, shown as dotted lines in Fig. 2. An
important characteristic of this family of lines is that
dc decreases with Q0 shown as broken line BF. That is, for
a given d, there will be a Q0 [denoted as Qc�d�] at which a
dilute-to-dense transition will occur. Figure 2 is the result
of experiments with fixed D but obviously Qc�d� will also
depend on D and d0. The Qc�d� curves for various D and
d0 have been measured and shown in Fig. 3. Four D’s,
D 
 30, 25, 20, and 15 mm, are tested for d0 
 1 mm
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particles, and two D’s, D 
 40 and 30 mm, are tested for
2 mm particles. In Fig. 3 the upper six curves are Qc�d�’s
and the lower six curves are the corresponding Qd�d�
curves for particles d0 
 1 and 2 mm. If the dilute-to-
dense transition scales with the system size, one might
expect that the exit width d should be scaled by channel
width D as Qc�d�=D 
 F�d=D� for some scaling function
F. The inset of Fig. 4 shows such a plot and obviously such
scaling does not hold. Instead, a new scaling variable � �

� d
D�d��

d
d0
� is found to collapse the scaled critical flow rate

qc� � Qc�d�=�D=d0�� into a single scaling curve as shown
in Fig. 4. The result in Fig. 4 can be expressed as qc 

q0F���, where q0 is some constant. It means that the
maximum flow rate of a dilute flow of a system of d
and D is not the same as that of a system of 2d and 2D
although their aspect ratio is the same.

A remarkable feature of the dilute-to-dense transition
is that there are strong fluctuations in Q�t� when d is set to
close to dc. Direct observations of the motions of the
beads close to the exit reveal that there are avalanchelike
events taking place at the two wedges on either side of the
exit. After the wedges have been built up by the incoming
flux, flows of surface layer in the form of avalanches will
occur. The two wedges effectively act as collectors of
incoming flux and direct them to the exit through the
surface flow. Therefore, there are strong density fluctua-
tions (in terms of area fraction p) near the exit. When the
discharge from the two wedges meet at the exit, the out-
flow can sometimes be blocked, leading to dense flow.
This blockage is intermittent if the incoming flux is not
large enough and therefore producing strong fluctuations
in Q�t�. However, if the incoming flux exceeds Qc, the
blockage becomes permanent and there is accumulation
of the beads in the test section until the whole section is
filled. Particle density � close to the exit can be deter-
mined from video pictures. It is found that a dilute-to-
dense transition will occur if � exceeds a critical value
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�c. In our experiments, it seems that the value of �c
always corresponds to that of an area fraction of 0:65�
0:03 and is independent of Qc, d, or D.

Following the observations discussed above, the flow
across the test section can be divided into three regions:
the central part with length d and the two wedges with
base length D�d

2 . If v0 and �0 are the velocity and density
of the dilute flow initiated by the hopper just before
particles reaching the wedges, the incoming flux on the
wedge is v0�0

D�d
2 . The outgoing flux of the wedge will be

carried away by the fluidized surface layer mentioned as
ve�c�, where � and ve are the depth and characteristic
velocity of the surface layer, respectively. Conservation of
flux gives � 
 v0�0

ve�c

D�d
2 . In this model, � will increase

with the incoming flux or �0. When these two top layers
meet at the exit, we have �� 
 d=2, where � is some
geometric factor which takes care of the angle of repose.
Therefore, at the transition, we have fc � �v0�0�c 

ve�c��1 d

D�d or fc
f� 


ve
v�

d
D�d , where f� � v��c��1. One

can consider v� as some intrinsic velocity of the problem
which is determined by physical properties of the system
such as the angle of inclination or coefficient of sliding
friction, etc. Presumably ve

v� is a function of system pa-
rameters D and d. However, for the case of D � d, it is
reasonable to assume that ve

v� depends only on d
d0

. In such a
case, one expects to see ve

v� � d
d0

because this is the first
order expansion of ve in terms of d when d 
 0 gives
ve 
 0. This later form of ve

v� gives fc
f� � � � � dd0�

d
D�d

which agrees with our result in Fig. 4 for small d or �.
Physically �ve=v�� � �d=do� means that the discharge
velocity of the fluidized layer of the two wedges increases
with d. Note that ve for the dense flow, ve � d� with
� 
 1=2 [19].

It can be seen from Fig. 4 that qc increases with �
monotonically. Obviously, for a fixed D, Qc must tend to a
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limit for large enough d=d0 in the experiments because Q
is given by v0�0D and there must be an upper limit in �0

to still have dilute flows in the test section. If qm is the
maximum dilute flow flux of the channel, we have qm 

q0F�1�. One can choose F�0� 
 0 and F�1� 
 1 to give
qc 
 qmF���. Note that there are two ways for � to go
to 1. When d 
 D, the test section is just a straight pipe
(2D), qm is obviously just the maximum dilute flow
capacity of the pipe. For fixed d=D, � goes to 1 when
either d goes to 1 or d0 goes to zero. In both cases, we
have a continuum limit in which the size of the particles
can be neglected. Therefore, our model predicts that qm is
independent of d=D when d=d0 is large enough. The
functional form of F��� 
 1� e���=�0�, which gives the
correct form of qc for small �, has been fitted to the data
in Fig. 4 shown as a dotted line. The scattering of the
measured values of Qc increases as � increases, which
makes it difficult to determine experimentally the limit
value of qc. Presumably, our model discussed above is
valid only for small d.

The phenomenological model described above is based
on the observation that the transition occurs when the flow
density near the exit reaches p 
 0:65� 0:03. The abrupt
change of the flow rate at the dilute-dense transition may
be understood as the inelastic collisions of the particles
with the two piles near exit. In some aspects, our system is
similar to the wedge setup of Rericha et al. [20], where
shocks identical to those in a supersonic gas are observed
when a steady flow passes the wedge. Our system, how-
ever, with the piled heaps at the two sidewalls near the
exit is equivalent to a system where particles pass two
inward ‘‘soft wedges,’’ a system more commonly seen in
industrial transport of granules. The abrupt change in
density, granular temperature, and velocity before and
after the dense area near the exit may account for the flow
rate drops at the dilute-dense transition, as the flow rate is
a function of the product of flow density and the particle
velocity. A two-dimensional molecular dynamics simu-
lation using force model similar to [21] is performed to
provide the microscopic view of the transition process.
Simulation results show that the dense flow and the dilute
flow are two different states. When the flow density
reaches p 
 0:65� 0:03, the flow becomes dense flow
and the multibody collisions dominate.

In conclusion, we have experimentally obtained a
dilute-to-dense transition curve Qc�Q0; dc�, at which
the flow rate Q0 drops to Qd at dc. Instead of the intui-
tive scaling relationship d=D, experimental results show
that a global scaling variable � � �d=�D� d���d=d0�
determines if the flow is dilute or dense at a given Q0.
The scaled qc can be fitted in an empirical form
qm�1� e���=�0��. The ratio �=�0 determines the critical
flux of the system. Intuitively, �0 is determined by physi-
cal properties of the system, such as the elasticity of the
particles, particle size, and the inclination angle of the
plate, etc. While the physics of jamming transition is
determined by local scales close to d0, our result suggests
204301-4
that the physics of dilute-to-dense transition is similar to
hydrodynamic instability which is controlled by global
scales such as d=�D� d�. The discovery of this global
scaling property may provide us with ideas of better
designs for the transport of granules in industrial pro-
cessing, and better understanding of similar flow systems
such as systems in traffic flows.
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