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In this paper we report our experimental study of dilute-dense transition in a 2-
dimensional granular flow of particle size d0 and channel width D with confined exit
of width d. It is found that a maximum inflow rate Qc exists, above which the outflow
changes from dilute to dense and the outflow rate Q(t) drops abruptly from Qc to a
dense flow rate Qd. The re-scaled critical rate qc(≡ Qc/(D/d0)) is found to be a func-
tion of a scaling variable λ only, i.e. qc ∼ F (λ), and λ ≡ d

d0

d

D−d
. The form of this

new variable λ suggests that the dilute-to-dense transition is a global property of the
flow; unlike the jamming transition, which depends only on d

d0

. It is also found that this
transition occurs when the area fraction of particles near the exit reaches a critical value
0.65 ± 0.03.
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The diverse phenomena of traffic flow, pedestrian flow and floating ice1–3 are be-

lieved to be related to the nonlinear behaviors of granular materials which can

exhibit both solid-like and fluid-like behaviors.4,5 These peculiar properties6,7 give

rise at least to three important “states” in granular flows; namely, the dilute flow,

dense flow and the jammed state. The phenomenon of crowding can then be under-

stood as a transition from dilute to dense flows and that of jamming is a transition

from dense flows to a jammed phase.

Obviously, the nature and properties of these transitions are governed by the

interactions among the granular particles in the flow. In principle, these transitions

and “states” can be well characterized when these interactions are known such

as in the cases of equilibrium systems.8,9 Unfortunately, since interactions among

the granular particles are highly nonlinear and characterized by dissipations which

can be density and even history dependent, it is not surprising to find that these

transitions and their states are still not well understood.
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An important characteristic of the dense-to-jammed transition is that there is

usually only one dominant length scale in the problem; namely the size of the

grains (d0).
10 In contrast, it seems that the global scale of the order of the system

dimensions is important for the dilute-to-dense transitions. For example, a small

bottle-neck of the size of the system can induce the dilute-to-dense transition.11 In

this aspect, the dilute-to-dense transition is similar to transitions in hydrodynamic

flows. In the case of hydrodynamic flows, it is well known that different Reynolds

numbers are associated with different flow configurations to characterize the flow

as laminar or turbulent. The Reynolds number is a global parameter which scales

with the system sizes. Intuitively, in the case of dilute-to-dense transitions, a similar

global scaling parameter might exist. If such a scaling parameter can be found, its

scaling form will probably provide a better understanding of the nature of the

dilute-to-dense transitions.

Here we report our results on experiments carried out in a 2D channel to look

for a relation between the dilute-to-dense transition and system parameters. We

find that the critical flow rate Qc at the transition can be well characterized by

the scaling variable λ ≡ d
d0

d
D−d where the system parameters are the channel

width (D), the opening of the channel (d) and the diameter of the grains (d0).

Qc is the critical dilute flow rate above which the outflow changes from dilute to

dense. The re-scaled critical flow rate qc(≡ Qc/(D/d0)) is a function of λ only. This

suggests that the dilute-to-dense transition is a global property of the flow; unlike

the jamming transition, which depends only on d
d0

. The transition is found to occur

when the area fraction of particles near the exit reaches a critical value ∼ 0.65±03.

The setup of this experiment has been described in detail in a previous paper.12

The experiment is performed in a two-dimensional (2D) channel of length l =

500 mm, and width in a range of 15 mm to 40 mm. The channel is inclined in

an angle of 20◦. The width d of the exit at the end of the channel is controlled

to a precision of 0.01 mm. The steel beads are first stored in a hopper. Granular

flows are initiated by allowing the steel beads in the hopper to fall by gravity along

the channel. The total mass M of the beads falling out of the exit of the channel

is measured as a function of time t by an electronic balance with sensitivity of

0.02 g and a weighing period of 0.02 s. The flow rate Q(t) can then be obtained by

calculating the slope of the recorded M(t) curve.

The flow initiated from the hopper is dilute and accelerating. The typical ve-

locity of the steel beads close to the exit is 1.0± 0.1 m/sec. Since d is smaller than

D, two wedges (heaps) will be formed at both sides of the exit with a base length

(D − d)/2. If the inflow rate Q0 is small or d is not too small, there will be no net

accumulation of beads in the channel other than the two wedges and 〈Q(t)〉 = Q0.

This is the regime of dilute flows shown in (a) of Fig. 1(B) of Ref. 15. However, for

a given Q0, there will be a critical dc below which there will be net accumulation of

beads in the channel. In other words, if d is decreased systematically, there will be

a sudden drop of Q(t) when dc is reached. This accumulation of beads will proceed

until the whole channel is filled with beads and this is the regime of dense flows.
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The process of this dilute-to-dense transition induced by reducing d is recorded in

video as shown in Fig. 1(B) of Ref. 15.

Figure 1 shows the d dependence of 〈Q(t)〉 when d is reduced or increased

systematically at a given Q0. When d is large (point A), 〈Q(t)〉 = Q0, the flow is

dilute. 〈Q(t)〉 remains practically independent of d when d is larger than a critical

size dc (A to B in Fig. 1). When dc is reached, the dilute flow turns to dense flow

and the flow rate can be reduced instantaneously by several times to drop from

Q0 to Qd (B to C). After the transition, Qd decreases monotonically with reducing

d (C to D). The flow jams when d is about the size of four-particle diameters,

where permanent arching occurs to cause jamming of the flow (D to E).10 When

increasing d from the jammed phase, the flow starts as dense flow, and the rate

〈Q(t)〉 increases gradually with increasing d until Qd reaches Q0 and turns back to

dilute flow as shown by triangle points in Fig. 2 (D through C to A). There is no

sudden increase of the flow rate at the transition from dense to dilute flow. We have

checked that the dense flow rate curve Qd(d) (the CD part of curve ACD), follows

the Beverloo empirical equation (d − kd0)
3/2 with k = 413,14 and is independent

of Q0.

If the experiment of Fig. 1 is repeated with different Q0, a family of paths similar

to ABCD of Fig. 1 will be formed, shown as dotted lines in Fig. 1. An important

Fig. 1. At a given inflow rate Q0, the outflow behaves differently when the flow is dilute or dense.
For a dilute flow, a transition from dilute to dense occurs at a critical opening size dc, and the
outflow follows curve ABCDE. For a dense flow, as d increases the flow follows curve DC and
extended to A with no abrupt change. For different Q0, the transition occurs at different d as
shown by dash lines. The curve BF determines the optimal outflow rate at any given Q0. For
clarity, only two dilute-flow experimental data sets are shown as solid circles and squares.
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characteristic of this family of lines is that dc decreases with Q0 shown as broken

line BF. That is: for a given d, there will be a Q0 (denoted as Qc(d) at which a

dilute-to-dense transition will occur. Figure 1 is the result of experiments with fixed

D but obviously Qc(d) will also depend on D and d0. The Qc(d) curves for various

D and d0 have been measured and shown in Fig. 2. Four D’s: D = 30, 25, 20 and

15 mm are tested for d0 = 1 mm particles, and two D’s: D = 40 and 30 mm are

tested for 2 mm particles.

In Fig. 2 the upper six curves are Qc(d)’s and lower six curves are the corre-

sponding Qd(d) curves for particles d0 = 1 mm and 2 mm. If the dilute-to-dense

transition scales with the system size, one might expect that the exit width d should

be scaled by channel width D as Qc(d)/D = F (d/D) for some scaling function F .

Instead, a new scaling variable λ ≡ d
d0

d
D−d is found to collapse the scaled criti-

cal flow rate qc(≡ Qc(d)/(D/d0)) into a single scaling curve as shown in Fig. 3.

The result in Fig. 3 can therefore be expressed as: qc = q0F (λ), where q0 is some

constant.

A remarkable feature of the dilute-to-dense transition is that there are strong

fluctuations in Q(t) when d is set to be close to dc. Direct observations of the motions

of the beads close to the exit reveal that there are avalanche-like events taking place
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Fig. 2. The Qc and Qd versus d of particle size d0 = 1 mm at channel widths D = 30, 25, 20 and
15 mm, and of particle size d0 = 2 mm at channel widths D = 40 and 30 mm.
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Fig. 3. The scaled qc(≡ Qc/(D/d0)) versus a new scaling variable λ
(

≡ d

d0

d

D−d

)

. The dotted

line is a fit of qc by q
m(1−e

−λ/λ0 )
, where qm = 216 and λ0 = 45.

at the two wedges on either side of the exit. After the wedges have been built up by

the incoming flux, flows of surface layer in the form of avalanches will occur. The

two wedges effectively act as collectors of incoming flux and direct them to the exit

through the surface flow. Therefore, there are strong density fluctuations (in terms

of area fraction p) near the exit. When the discharge from the two wedges meet at

the exit, the outflow can sometimes be blocked leading to dense flow. This blockage

is intermittent if the incoming flux is not large enough and therefore producing

strong fluctuations in Q(t). However, if the incoming flux exceeds Qc, the blockage

becomes permanent and there are accumulation of the beads in the channel until

the whole section is filled. Particle density ρ of area 40 mm × 80 mm at the exit

is shown by averaging video pictures in Fig. 4. It is found that a dilute-to-dense

transition will occur if ρ reaches a critical value ρc. In our experiments, it seems

that the value of ρc corresponds to that of an area fraction of 0.65± 03 (see Fig. 4)

and is independent of Qc, d or D.

Following the observations discussed above, the flow across the channel can be

divided into three regions; the central part with length d and the two wedges with

base length (D − d)/2. If v0 and ρ0 are the velocity and density of the dilute flow

initiated by the hopper just before particles reaching the wedges, the incoming flux

on the wedge is v0ρ0
D−d

2
. The outgoing flux of the wedge will be carried away by
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Fig. 4. The average occupancy probability of particles near the exit before transition occurs. In
the figure particles flow from top to bottom. The exit width is 16 mm centered at x = 20 and
y = 30.

the fluidized surface layer mentioned as veρcδ where δ and ve are the depth and

characteristic velocity of the surface layer respectively. Conservation of flux gives:

δ = v0ρ0

veρc

D−d
2

. In this model, δ will increase with the incoming flux or ρ0. When

these two top layers meet at the exit, we have: δβ = d/2 where β is some geometric

factor which take care of the angle of repose. Therefore, at the transition, we have:

fc ≡ (v0ρ0)c = veρcβ
−1

d

D − d
or

fc

f∗
=

ve

v∗
d

D − d

where f∗ ≡ v∗ρcβ
−1. ve

v∗
is a function of system parameters D and d.

For the case of D � d, it is reasonable to assume that ve

v∗
depends only on d

d0

.

It gives fc

f∗
∼ λ ≡ ( d

d0

) d
D−d which agree with our result in Fig. 4.

In conclusion we have experimentally obtained a dilute-to-dense transition curve

Qc(Q0, dc), at which the flow rate Q0 drops to Qd at dc. Instead of the intuitive

scaling relationship d/D, experimental results show that a global scaling variable

λ ≡ d
d0

d
D−d0

determines if the flow is dilute or dense at a given Q0. The scaled qc

can be fitted in an empirical form qm(1 − e−λ/λ0). The ratio λ/λ0 determines the

critical flux of the system. Intuitively, λ0 is determined by physical properties of the

system, such as the elasticity of the particles, particle size and the inclination angle

of the plate etc. While the physics of jamming transition is determined by local

scales close to d0, our result suggests that the physics of dilute-to-dense transition

is similar to hydrodynamic instability which is controlled by global scales such as

(d/(D−d)). The discovery of this global scaling property may provide us with ideas
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of better designs for the transport of granules in industrial processing, and better

understanding of similar flow systems such as systems in traffic flows.
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