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Compartmentalized bidisperse granular gases are numerically studied. Molecular-dynamics simulations
studying granular clock phenomenon in three dimensions are presented, which complement previously re-
ported two-dimensional simulation results. A flux model for binary mixtures is found to give qualitative
descriptions for the oscillations, with no undetermined parameters or functions. Two different states, a degen-
erate oscillatory state and a state with large particles segregated and small particles homogeneously distributed,
are found in our simulations. These features reveal a much more complex phase diagram for the system, which
challenges the existing theoretical models.
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Granular systems, in which ordinary thermal fluctuations
do not play a role, often exhibit various ordered patterns.
Patterns form when the systems turn out to be in multiple
metastable steady states, which are far from equilibrium.
Spatial ordered structures, such as regular surface patterns,
oscillons, segregation structures, etc., have been observed in
different kinds of granular systems �1�. Recently, another fas-
cinating phenomenon, oscillation, was also numerically pre-
dicted for a binary granular gas in a two-compartment �TC�
setup �2,3� and was observed in later reported experiments
�4–6�. This so-called granular clock phenomenon may
greatly enrich our understanding of the nonequilibrium prop-
erties of granular systems.

The TC setup, as shown in Fig. 1�a�, was borrowed from
the concept of Maxwell’s demon. In this setup, a demon
state, i.e., segregation of slow and fast-moving particles, was
successfully realized with monodisperse inelastic grains
�7–10�. For such a monodisperse granular gas, the clustering
dynamics and the bifurcation instabilities were well ex-
plained by several flux models �8,9,11,12�. Later Mikkelsen
et al. �13,14� placed binary granular mixtures �large and
small steel beads� into a similar system and experimentally
showed a competitive clustering phenomenon between the
two compartments. They generalized the flux model of Egg-
ers �8� to bidisperse granular gases �referred to as GF model
below� to explain the observed phenomena. Though they
found no oscillatory states either in their experiments or their
numerical results, two later papers predicted this so-called
granular clock phenomenon in two-dimensional �2D� sys-
tems through molecular-dynamics simulations and theoreti-
cal models: Costantini et al. �2� simulated systems of smooth
hard disks with equal sizes but different masses and devel-
oped a mean field theory; while Lambiotte et al. �3� simu-
lated those with different sizes but equal masses and sug-
gested a four-ODE description. Miao et al. �4� first observed
the oscillatory phenomenon experimentally using millets and
mung beans, which were different in both size and mass.
However, they claimed no oscillation for large and small
beads of same material. Viridi et al. �5� later observed such
an oscillation with large and small glass beads in a quasi-2D
system. They adopted the model of Lambiotte et al. to ex-
plain their results. Our recent results �6� showed the exis-
tence of oscillation of glass and steel beads with equal sizes
in a three-dimensional �3D� system, and a phenomenological

model was raised to show the instability as a supercritical
Hopf bifurcation. However, none of the above models ob-
tained quantitative agreements with experimental results and
some features we will report here have not been discovered
by these models either.

According to all the reported results and accumulated ex-
perimental data, we know that oscillations would occur for
mixtures of beads with either different masses, different
sizes, or even with different coefficients of restitution, under
conditions of proper number ratios of beads and proper driv-
ing velocity of the bottom plate. With many controlling pa-
rameters of such a system, a detailed and complete study by
experiments would be rather difficult. Numerical study in
this case becomes a necessary supplement. Nonetheless,
works on the granular clock in 3D simulations have never
been reported, despite the fact that experiments are usually
done in 3D, and none of the above theoretical models ob-
tained quantitative agreements with experimental results. In

FIG. 1. The TC container �a� and snapshots of an oscillatory
state �b1�–�b5� obtained in simulation with 360 small �black� and 40
large �white� beads.
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this Brief Report, to study the population of grains in com-
partmentalized bidisperse granular gases, we have employed
3D event-driven molecular-dynamics simulations and recon-
sidered the GF model for a better theoretical description. We
have not only successfully reproduced oscillation phenom-
ena by our simulation and by the slightly modified GF
model, but also obtained phases in simulation.

The simulation method that we use is a standard event-
driven algorithm for 3D systems. The particles are taken as
hard spheres that deformations are ignored while colliding.
Particle-particle and particle-wall collisions are considered as
instantaneous events. Between the two events the particles
move freely keeping parabolic paths under gravitational ac-
celeration g. At an event of collision the velocities of the
particles after contact are computed from the velocities just
before the contact, according to Newton’s laws. An experi-
mental setup with a TC container fastened onto a shaker is
simulated. In the container there are small and large smooth
hard spheres, with radius ri, mass mi, and total number Ni,
respectively �i=1 for smaller spheres and i=2 for larger
ones�. Number ratio between the two species is defined as
�=N1 /N2. A real occupation state is represented by the
numbers of both species in the left and right compartments,
i.e., ��N1l ,N2l� , �N1r ,N2r��. For convenience, define N=N1
+N2, �i=Ni /N, and ni�=Ni� /Ni, where � denotes l�r� for the
left �right� compartment. The two compartments of the con-
tainer, with ground area 50r�50r �in x-y plane� and height
150r �z direction� for each, are connected by a rectangular
hole with width W=30r and height H=30r, centered at z
=50r. Here r is a scaling length, whose value is set as the
radius of the small particles r1. The bottom of the container
is vibrated vertically with adjustable velocity Vb �dimension-
less in unit �4gr� in a saw-tooth manner. The normal coeffi-
cients of restitution � for particle-particle and particle-wall
collisions are taken to be constant and both are set to 0.90.

The upper panel of Fig. 2, �a1�–�a4�, shows our simula-
tion results for a fixed number ratio �=19 �or �2=0.05� and
N=400. The shaking strength increases from Vb=0.64 for
�a1� to Vb=0.88 for �a4�. When the shaking is weak, most of
the beads tend to be clustered in one of the two compart-
ments, leaving few fast-moving ones in the other, and the

system stays in an asymmetrical clustering �ASC� state sta-
bly. However, in which compartment particles would as-
semble, is sensitive to the initial distribution of the beads,
and competitive clustering phenomenon may be observed in
this regime �13,14�. For moderate shaking, the oscillatory
�OSC� state is observed �see Fig. 2 �a2��, same as what we
observed in our previous experiments �6�: the large �heavy�
particles are more likely to stay near the bottom and transfer
energy �or heat� to the small �light� ones. If the vibration
velocity is proper, the small �light� particles, lifted up by the
large �heavy� ones, have chance to go through the hole and
cool down when clustered in the other compartment. Once
most of the small �light� particles have emigrated, the large
�heavy� ones, without any loads, are pumped high enough by
the bottom plate and are able to jump through the hole. The
same cycle will repeat to let particles jump from the other
compartment back to the original cell. Population oscillation
of small and large particles between the two compartments is
observed with a phase shift between the large �heavy� beads
and the small �light� ones. When the shaking becomes strong
enough, the oscillation damps �Fig. 2 �a3�� and finally
reaches a homogenous �HOM� state that particles populate
equally in the two compartments as is shown in Fig. 2 �a4�.

All these results above are similar to previously reported
2D results �2,3�. We would therefore like to use similar mod-
els used in the 2D case to our system. Here we review the
GF model used by Mikkelsen et al. �14�. This GF model is
based on several assumptions: �1� In either compartment,
energy equipartition is valid between species, so that both
species share a common granular temperature T� �� denotes
either of the two compartments�; �2� each species has a
barometric height distribution, therefore the pressure for
each species in such a granular gas has a distribution as
pi��z�= �Ni�mig /��e−migz/kBT�, where � is the ground area of
each compartment; �3� Maxwellian and isotropic velocity
distribution is assumed, i.e., �v�i

2 	=kBT� /mi, and �
v�i
	
=�2kBT� /�mi, where � denotes x ,y ,z. The balance between
the dissipation and energy input determines the granular tem-
perature of each box, kBT�=vb

2	� / �16��1−�2�2�, where the
explicit form of function 	��N1� ,N2�� could be found in Ref.
�14�. Since this model requires barometric height distribu-
tions for either species, the fact that heavy particles are more
likely to stay near the bottom would be self-evident. This
implies a possible description for the OSC state.

The flux function is a key element for such a flux model.
Considering that 
Ni particles of species i hit an elastic rigid
wall and rebound from it in a rather short time 
t. For an
area with width W and height H in the wall, we can calculate
the force on the area with the pressure distribution, simply
f =W�h

h+Hpi��z�dz, where h is the bottom height of the hole.
The impulse f ·
t supplies the particles with momentum

Ni2mi�
vxi
	. If such a W�H area is excavated, all the 
Ni
particles will flow out through the hole during the time pe-
riod 
t. Then the flow rate is

Fi�N1�,N2�� =

Ni


t
=

f

2mi�
vxi
	
.

With known pi��z� and �
vxi
	, a similar flux function to
Mikkelsen et al.’s can be obtained,

FIG. 2. Simulation results �a1�–�a4� and the corresponding
states �b1�–�b4� obtained by the GF model for �=19: asymmetrical
clustering state at Vb=0.64 �a1� and D=148 �b1�, oscillation at Vb

=0.72 �a2� and D=144 �b2�, damped oscillation at Vb=0.80 �a3�
and D=138 �b3�, soon reached homogeneous state at Vb=0.88 �a4�
and D=134 �b4�; dark solid n1l, gray solid n1r, dark dashed n2l, and
gray dashed n2r.
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Fi�N1�,N2�� = KNi��	�

mi
e−Dmi/	��1 − e−�Dmi/	�� ,

where K=
Wvb

8�2��1−�2� , D= 16�gh�1−�2�2

vb
2 , �=H /h, and h is the bot-

tom height of the excavated area. D is an important control-
ling parameter indicating the ratio of energy loss and energy
input, as Mikkelsen et al. �14� have pointed out.

Using this flux function, we rebuild the coupling dynami-
cal equations of the system for species i=1,2 as follows:

dnil

dt
= −

dnir

dt
= − Fi�n1l,n2l� + Fi�n1r,n2r� .

With given initial conditions for ��n1l ,n2l� , �n1r ,n2r��, we are
able to predict how the system evolves. Calculations show
that this flux model, with different shaking strength, may
exhibit three possible steady states: ASC, OSC, and HOM
�shown in the lower panel of Fig. 2, �b1�–�b4��. Oscillation
occurs at an intermediate value of D, which is between the
regime of ASC and that of HOM. All the curves agree quali-
tatively well with our simulation results.

Within this flux model, the net flux
dnir

dt for either species
in one of the compartments at different values of D in the
range of ASC, OSC, and HOM regimes, respectively, is cal-
culated and the flow diagrams are given in the n1r-n2r plane
shown in Fig. 3. When D is large that the shaking velocity is
low, there are three fixed points for the system among which
A and B are stable and O is unstable. The system stays in the
ASC regime and reaches its final steady state at point A or B,
depending on where it is initialized �Fig. 3�a��. As D be-
comes smaller, shaking strength is stronger, and a limit cycle
appears. This limit cycle is expected to be stable and the
system oscillates �Fig. 3�b��. When D is even smaller, the
center O becomes a stable fixed point, and the system is
always led to this point, i.e., reaching a HOM state �Figs.
3�c� and 3�d��.

As shown above, we have successfully obtained using our
3D simulations and the GF model the OSC state, showing

similar oscillatory curves with nearly the same values of os-
cillation period �in Fig. 2� with different corresponding val-
ues of vb �in simulations� and D �in GF model�. Moreover, it
is interesting to see that in our 3D simulations, some differ-
ent states are observed, which have not been described by
either the GF model or any previous models.

Choosing a much smaller number ratio, say �=3 �or �2
=0.25�, we find a degenerate oscillatory �d-OSC� state, as
shown in Fig. 4. In this state, the large particles mainly stay
in one of the compartments with only a small number of
them participating in the oscillation, while most of the small
ones oscillate between the two compartments. In this case
comparing with the situation in Fig. 2, there are more large
particles so that the dissipation due to large-large particle
collisions is as significant as large-small particle collisions.
Therefore the change in number of small particles in the
compartment cannot affect the velocity of the remaining
large particles significantly that the large particles remain in
a so-called degenerate oscillation state. Although the whole
system is still in an oscillatory state, its phase orbit in the
n1r-n2r plane has already taken a topological transition: the
single limit cycle breaks into doubly degenerate ones �see
Fig. 4�b��. This is interesting and none of the previous mod-
els have ever predicted it.

To know more about the d-OSC state, a detailed phase
diagram �15� is obtained by simulations, as shown in Fig. 5.
There appears the d-OSC regime next to OSC regime, when
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FIG. 3. Flow diagrams �
dn1r

dt ,
dn2r

dt �: �a� D=192, �b� D=142, �c�
D=137, and �d� D=100; dashed lines for

dn1r

dt =0 and dash-dot for
dn2r

dt =0; gray lines show specific tracks of the system as illustrations,
while the evolving direction is just along the vector field.

FIG. 4. Oscillatory curves of the d-OSC state for �=3 at Vb

=0.60 �a� �dark solid n1l, gray solid n1r, dark dashed n2l, and gray
dashed n2r� and the corresponding phase orbit with two possible
branches on the n1r-n2r plane �b�.
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FIG. 5. �Color online� Phase diagram by molecular-dynamics
simulations with N=400.
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the number fraction of the large particles �2 is less than 0.3.
We see that as the number fraction �2 increases, the OSC
regime gradually gives place to d-OSC regime, and finally
disappears. Within the range that both of these oscillatory
states coexist, the OSC regime is found at lower driving
velocity Vb comparing to that in the d-OSC regime. This
means an OSC state requires less energy injection than a
d-OSC state. It is interesting to note that proper weaker shak-
ing can make nearly all the particles oscillate between com-
partments, while stronger shaking cannot. Also observed is a
concomitant state of the d-OSC state: the small beads are
homogeneously distributed �s-HOM�, while the large ones
show an asymmetric segregation. The existence of s-HOM
state can be understood as a state originating from the d-OSC
regime by increasing driving velocity Vb.

Finally we would like to discuss the stability of the
d-OSC state for the corresponding regime is narrow in the
phase diagram same as for the OSC regime �2,3,6�. Though
all the models do have limit cycle solutions for the OSC
regime, none of them are quantitatively accurate and can
hardly predict or ensure the state being stable. In our simu-

lations, we tried running the program for many cycles, no
obvious damp was observed in the results during the time of
at least 15 oscillations for both the OSC and d-OSC states,
and the system could cross the same point for many cycles in
the n1r-n2r plane. We also tested the system with various
initial distributions, i.e., it was set at different points, inside
or outside the limit cycle that we assumed, at the beginning.
We found that it returned to the cyclic orbit wherever it
started, and this made us believe that the d-OSC state should
not be a transient state.

In conclusion, we demonstrate that the ASC, OSC, and
HOM states of bidisperse granular gases in a TC system can
be reproduced by 3D molecular-dynamics simulations and
the GF model, and more interestingly two different states,
d-OSC and s-HOM, are found in our simulations. Further
theoretical modeling and experimental studies are needed for
better understanding of these phenomena.
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