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Although both granular gases (GG) and molecular gases (MG) are characterized by random motions of
their constituents, phenomena not possible for MG, such as clustering and Maxwell’s demon are reported
in GG. The origin of these intriguing phenomena is the dissipative collisions in GG which are coupled to
the local density of the GG in a spatially extended or compartmentalized system. Systems with two or
more types of grains are especially interesting because the asymmetry in the dissipative collisions
between different types of grains can lead to oscillations and even more interesting dynamics. In this
article, flux models with different granular temperatures for different types of grains are studied to
understand and explore these phenomena.
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1. Introduction

Traditionally, properties of granular materials would only
be interested to engineers who mainly concern their static
mechanical properties for practical reasons.1) However, the
dynamics of granular materials turn out to be extremely rich
and have attracted attentions from physicists of different
fields.2–4) Some of the famous examples are the heap
formation of a granular bed5–7) and the size segregation of a
granular system with grains of various sizes under vertical
vibration known as the Brazil Nut effects.8,9) In these
phenomena, energy is being injected continuously into the
system by the oscillating boundaries and propagated into the
bulk by the inelastic collisions of the grains. A steady state
of the whole system is reached when the dissipation of the
system is balanced by the input of the energy. Since both
the energy input and dissipation depends crucially on the
configurations of the system, many intriguing steady states
and even oscillatory states can be created.

In both the heap formation and the Brazil nut effects, the
density of the system is high and the agitated granular
system looks like a liquid. Therefore, concepts such as
convection and buoyancy sometimes are used to explain the
observed phenomena. In the case of low density such as a
granular gas, one might naturally borrow concepts from their
molecular counter parts. At first sight, granular gases (GGs)
and molecular gases look similar, both are characterized by
random motions and collisions. Similar to the temperature of
a molecular gas, the concept of granular temperature10) is
sometimes found to be useful. However, the GGs are only in
a steady state in which input and loss of energy are being
balanced. They are not in thermal equilibrium as their
molecular counter parts and the laws of thermodynamics for
molecular gases do not apply for the GGs. For example, the

thermodynamically impossible phenomenon such as the
Maxwell’s demon11,12) has been produced and successfully
explained. In such an experiment, a GG confined in a
compartmentalized system (see Fig. 1) can be induced to
segregate into only one of the compartments by lowering the
vibration amplitude of the system. In this latter case, a
decrease of the configurational entropy of the system takes
place spontaneously; as if the second law of thermodynam-
ics is violated. In fact, other similar intriguing segregation13)

and ratchet effects14) have also been reported in compart-
mentalized granular gases.15)

Since GGs are only in a quasi-steady state of energy
balance, many different configurations of the system are
possible, the transitions between these possible states give
rise to the intriguing pattern formation and dynamics in
granular systems under vibration; especially for a spatially
extended system. In a spatially extended system, it is
possible that different parts of the system are in different
configurations in which local energy balance is still
achieved. For example, for the heap formation, most of
the grains in a uniformly distributed layer of granular
materials will be concentrated in one corner of the container
to form a heap under sufficiently strong vibration. One can
identify the grains in the heap as in a condensed phase
of the granular gas while the very few number of grains
outside the heap as in the gas phase. The grains in the
gas phase will have higher velocities than those in the
condensed phase because they have direct contact with the
vibrating boundary and little inter-particle collisions. How-
ever, for the grains in the condensed phase, because of the
high density, energy gained from the collisions with the
boundaries is rapidly dissipated by the inter-grain inelastic
collisions in the bulk. If one uses the concept of granular
temperature which is related to the kinetic energy of the
grains, one will find that the grains in the heap are at a
lower temperature than those outside the heap. Clearly, one
can see that a ‘‘temperature’’ gradient is thus created by the
external vibrations in a spatially extended system because
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of the self-organization of the spatial distribution of the
grains.

Obviously, the above situation becomes more interesting
when there are more than one type of grains in a spatially
extended system. For example, because of the asymmetry in
the dissipative collisions between different types of grains,
the energy injected from the vibrating boundary will be
distributed differently to different types of grains. Therefore,
different types of the grains can have different granular
temperatures at the same time; even at the same location in
the system. Presumably, the self-organization of these grains
in a spatially extended system leads to the many intriguing
dynamics reported recently. In this article, we will briefly
review some of these phenomena and discuss the case of
granular oscillation in details in terms of a flux model with
different granular temperatures for different types of grains.

2. Maxwell Demon: Clustering of Grains in
Compartmentalized Chamber

We will start with the case of the Maxwell’s demon.
Filling N plastic particles in a box separated into two
identical compartments, connected by a narrow horizontal
slit at a finite height h, Schlichting and Nordmeier11) in 1996
performed an experiment on dilute gas of granular materials
by vertical vibration. When the shaking strength is high
enough, particles will distribute equally to both sides of the
box. As the vibration strength is lowered than a certain
critical value, this symmetry in population will be broken,
and particles will settle preferentially on one side of the
box. The clustering of grains into one side of the system
is referred as the ‘‘Maxwell’s demon’’ phenomenon. The
particles in the connected two compartments are at different
temperatures: one at dilute phase of high temperature and the
other at dense phase of low temperature. Eggers in 1999
developed a flux model12) and obtained a quantitative theory
for this clustering phenomenon. It was found in good
agreement with his numerical simulation results. In 2001
Lohse’s group studied the vibro-fluidized granular gas in 2
and 3 compartmentalized containers.13) They found that for
sufficiently strong shaking the population is equi-partitioned,
but when the shaking intensity is lowered, the gas clustered
in one compartment. The phase transition towards the cluster
state is of 2nd order for 2-compartments and 1st order for
3-compartments. This clustering effect with 3 or more
compartments is found to be hysteretic.13,16) Later in 2001
Brey et al.17) reported observations of spontaneous symme-
try breaking in simulations of a vibrated system confined in
two connected compartments under no gravity, and the
phase transition was satisfactorily described by hydrody-
namic equations.

As discussed in the previous section, granular systems, in
which ordinary thermal fluctuations do not play a role, often
exhibit various ordered patterns. Patterns form when the
systems turn out to be in multiple meta-stable steady states,
which are far from equilibrium. Spatial ordered structures,
such as regular surface patterns, oscillons, segregation etc.,
have been observed in different granular systems.18) GG in
compartmentalized system showed a variety of patterns far
from equilibrium, with the Maxwell demon clustering being
a classic example. A typical setup for such a system is shown
in Fig. 1, which can manifest the Maxwell demon phenom-

enon. Figure 1 is a 2-compartment system which is made up
of a right compartment (RC) and a left compartment (LC).
Hereafter, quantities in the LC and RC will be denoted by
the L and R subscripts respectively.

To realize such a demon state by dint of dissipation, most
attention had been given to the clustering phenomenon of
mono-disperse granular gases in this system.12,17,19,20) And
this granular demon state was easily observed, while the
clustering dynamics and the bifurcation instabilities were
well explained by several flux models,21) which described
the flows of particles between the compartments. Here we
illustrate that this clustering or ‘‘Maxwell demon’’ phenom-
enon can be understood as an unstable evaporation and
condensation unique to granular systems. For a single type
of grains (number of grains, N, mass, m, radius, r, coefficient
of resititution, e), under vertical vibration of a bottom plate
of area � and speed v, by balancing the energy input
rate due to the vibrating bottom plate (’ mgNv for
v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m
p

) to the dissipation due to inelastic collisions
among the grains [¼ 4gN2r2ð1� e2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mkBT
p

=�], one can
easily derive the steady state granular (kinetic) temperature,
as

kBT ¼
m

�

v�

4ð1� e2Þr2N

� �2

ð1Þ

where kB is the Boltzmann constant. Such a relation can
be intuitively understood from the picture that the kinetic
temperature of a grain comes from the energy of vibrating
plate (/ v2) and shared by the binary inelastic collisions
(/ 1=N2). The key idea in explaining Maxwell demon is that
the granular temperature of the grains is given by T /
ðv=NÞ2 which constitute the mechanism for the instability
that gives rise to clustering of monodispersed grains into one
side of a compartmentalized chamber.12,22)

For a mono-disperse granular gas in a single compart-
ment, there is a single granular temperature for the system,
T , which is inversely proportional to N2 because most of the
dissipation of the system comes from the binary collisions of
the grains among themselves and higher density means more
collisions and therefore a lower T . However, for the case as
shown in Fig. 1 with two chambers, when v is large, one
would expect that the grains are free to move back and forth
between LC and RC. Therefore, the grains are distributed
equally (NR ¼ NL ¼ N=2) in LC and RC with TR ¼ TL.
When v is lowered to a point that most of the grains in RC
and LC cannot be exchanged, the system can be unstable.

TL TR

NL NR

V
L R

Fig. 1. (Color online) A schematic of a typical setup for a granular gas in

a compartmentalized chamber under vertical vibrations. The temperature

and number of grains in the left (right) chamber are denoted by TL (TR)

and NL (NR) respectively.
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Consider a fluctuation of �N in the number of grains in the
RC, i.e., NR ¼ N=2þ�N, NL ¼ N=2��N. In this case, TL

will be higher than TR and more grains will jump from LC to
RC than those from RC to LC. During this process, TL is
raised further by the evaporation of grains and vice versa for
the condensation in RC. Therefore this process is unstable
and it will not stop until the difference in grain number
between the two compartments is so large that the smaller
probability for grains to jump from RC to LC is compen-
sated by a large number of NR.

3. Binary Mixture of Grains in a Two-Compartment
Chamber

Bidisperse GG in compartmentalized system was first
studied experimentally in 2002 by Lohse’s group20) using
steel balls which experimentally showed the competitive
clustering phenomenon between the two compartments. The
radius ratio of the large and small beads is fixed as 2 : 1 and
the number ratio is 1 : 2. The chamber is mounted on a
shaker with adjustable amplitude A and frequency f . The
inverse shaking strength 1=ðAf Þ2 is found to be one of the
crucial parameters for the clustering behavior. They found
that depending on the shaking strength, the clustering can be
directed either towards the compartment initially containing
mainly small particles or to the one containing mainly large
particles. And they generalized Eggers’ flux model12) to bi-
disperse GGs to explain what they observed. This exper-
imental finding was carefully studied and reported in 2004
by Lohse’s group with MD simulation and theoretical
modeling.23) Though no oscillatory state was found either in
their experiments nor numerical simulation results, two later
papers predicted this so-called granular clock phenomenon
in two-dimensional (2D) systems, through molecular dy-
namics simulations and theoretical models: Costantini
et al.24) simulated smooth hard disks with equal sizes but
different masses, and developed a mean field theory; while
Lambiotte et al.25) simulated those with different sizes but
equal masses, and suggested a four-dimensional dynamical
system description. Experiments in ref. 26 showed the
existence of such an oscillation with large and small glass
beads in a quasi-2D system, and Lambiotte et al.’s model
was adopted to explain their results in terms of reverse
Brazil nut effects. However, the above models were not in
good quantitative agreements with experiments nor theoret-
ically satisfactory. Our latest results22) showed the oscilla-
tion of glass and steel balls in a three-dimensional system,
and a new phenomenological model was proposed to show
the instability of the equi-partition state is via a supercritical
Hopf bifurcation giving rise to oscillation.

3.1 Granular clock: Brief review of experimental results
Here we briefly review some experimental results for

binary mixtures of grain in a two-compartment system.
Miao et al.27) first observed oscillatory phenomena in some
preliminary experiments using millet and mung beans,
which were different in both sizes and masses. However,
they claimed no oscillation for large and small beads made
from the same material. Markus’ group in 2006 reported26)

their observations of oscillations and full segregation in
a quasi 2-D system containing two compartments of
bidisperse granular gas consisting of particles with equal

densities but different diameters or grains of equal diameters
but different densities. Soda lime glass spheres with 138
smaller spheres (diameter 2 mm) and 27 larger spheres
(diameter 4 mm) were used; and for experiments with binary
mixtures of particles having equal sizes (diameters: 2 mm)
and different densities, 92 spheres of pairs of spheres of
polyacetal, glass, steel, and bronze were used. Oscillations
between the left and right compartments were observed and
were interpreted using mechanism involving reverse Brazil
nuts effects which lead to ad hoc terms in the dynamical
model equations.

The recent experiments performed by our group are
carried out in three-dimensional (3D) rectangular cells and
with grains of equal sizes.22) The detailed dynamics and
phase diagram was obtained. The experimental setup is
consisted of a rectangular glass container of 2.6 cm wide and
5.4 cm long with height of 13.3 cm, divided into two equal
compartments by an aluminum wall of 0.2 cm thick.
Particles in the two compartments are connected by a
window of 28� 18 mm2 on the wall. The bottom edge of
the window can be at a height (h) of 0.9, 1.5, and 2.0 cm
from the bottom plate. This glass container is mounted on a
shaker to bring the system into a gaseous state through
vertical, sinusoidal vibrations with adjustable frequency f

and amplitude A. Steel balls and glass beads of the same
size, 0.5 or 1 mm in radius, are used. Observation of the
dynamics of the systems is carried out as a function of the
shaking velocity v with v ¼ 2�Af . In this experiment three
regimes, namely, segregation, oscillation and homogeneous
distribution, of the two types of grains in the two compart-
ments are observed at different number ratios and shaking
velocities v. In the experiments to determine the phase
diagram (Fig. 2, the total number of grains is fixed at 960
while the ratio of number of glass beads to that of the steel
beads (�0) varies from 1 : 1 to 7 : 1. Video and pictures are
taken to record the observed particle motions. The bounda-
ries of these regimes are determined by measuring either the
oscillation amplitude or its time period. The oscillation
amplitude is measured by counting the number of remaining
steel particles when maximum particles are in the other
compartment. The time period of the oscillation is deter-
mined using a timer at the lower boundary as the oscillation
is longer than a few seconds to minutes.

Results of our experiments are summarized as a phase
diagram in terms of v and �0 as shown in Fig. 2 obtained
with f ¼ 60 Hz. Three states [homogenous (HS), oscillatory
(OS), and segregated (SS)] in the distribution of grains can
be observed as v increases. These phases are separated by
two transition velocities vf and vc which are functions of �0.
It is shown that the boundaries of these three regimes are
sensitive only to the combination of Af / v. For a fixed
value of �0, as v is being lowered, the system is first in HS
when v > vc and then turns into OS when vc > v > vf . The
system becomes segregated (SS) when v is lowered below
vf . The features of the transition points vc and vf are that the
amplitude of the oscillations (�) increases with (vc � v)
while the period of the oscillation (�) decreases with
(v� vf). More details of the experimental results can be
found in ref. 22. The dynamics of the clock is explained in
terms of an unstable evaporation/condensation model for the
GG in which the temperatures of the two types of grains are
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considered to be different and they are functions of the
composition of the GG. In our model, oscillations in the
system are driven by the asymmetric collisions properties
between the two types of grains. Some details of the model
will be presented in the following section.

3.2 Dual temperatures in binary mixture of grains
To understand the observed oscillations in experiments, it

is essential to realize that two different temperatures exist for
the two types of grains in the binary mixture. Consider now
the simpler case of a chamber (not compartmentalized)
consists of two type of grains A and B, each with masses and
radii m� and r� (� ¼ A or B), and the total number of grains
are NA and NB respectively. The upward vertical direction is
the z-axis and the number density of grain is denoted by
n�ðzÞ. Due to gravity (denoted by g), the grain density
follows the barometric distribution given by

n�ðzÞ ¼ n�ð0Þ exp �
m�gz

kBT�

� �
� ¼ A or B: ð2Þ

n�ð0Þ ¼ ðm�gN�Þ=ð�kT�Þ which follows from the normal-
ization condition

R1
0

n�ðzÞ dz ¼ N�=�. If the initial speeds
of A and B grains are uA and uB respectively, one can get
the kinetic energy change of A-grain in an AB collision,
�KA, by direct calculation. The energy change rate/volume
of A-grains due to AB collision is

q(AB)
A ¼ nAðzÞnBðzÞ�ðrA þ rBÞ2hjuA � uBj�KAi: ð3Þ

The mean dissipation rate of A-grain due to AB collision
is obtained by Q(AB)

A ¼ ��
R1
0

dz q(AB)
A . Then after some

algebra, one finally obtains28)

Q(AB)
A ¼ �

2
ffiffiffiffiffiffi
2�
p

mAmBg

�ðmA þ mBÞ2
ðrA þ rBÞ2

� NANBð1þ e(AB)Þðe(AB)mB � mAÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

A þ �2
B

q
;

ð4Þ

where e�� denotes the restitution coefficient between the �-
type and �-type grains (� ¼ A or B) and �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT�=m�
p

.
Thus A-grains can gain energy from AB collisions (i.e., B-
grains heat up A-grains) if e(AB)mB > mA. The dissipation
rate of A-grains due to A–A collisions can also be computed
in a similar way to give

Q(AA)
A ¼

4
ffiffiffi
�
p

mAg

�
r2
AN

2
Að1� e2

(AA)Þ�A:

Thus the total dissipation rate of A-grains is given by
Q(AB)

A þ Q(AA)
A which would be equal to the mean energy

input rate (denoted by JA) from the bottom vibrating plate
colliding with the A-grains. Similar expressions for the
dissipation rates of B-grains due to AB collisions (Q(AB)

B ) and
BB collisions (Q(BB)

B ) can be similarly obtained simply by
interchanging A$ B in the expressions for Q(AB)

A and Q(AA)
A

respectively.
On the other hand, the rate of energy input due to

collisions between the vibrating bottom plate and the grains
is J� ’ m�gN�v (� ¼ A or B). For a binary mixture of A
and B grains under steady condition, the energy input rate of
each type of grain is balanced by its total dissipation rate,
namely JA ¼ Q(AB)

A þ Q(AA)
A and JB ¼ Q(AB)

B þ Q(BB)
B . One

can obtain,28) after some algebra,

�A ¼
v

DANA

þ
�

DA�

e(AB)mB

mA

� 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

A þ �2
B

q

�B ¼
v

DBNB

�
��

DB

1�
e(AB)mA

mB

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

A þ �2
B

q
ð5Þ

where

� � NA=NB;

DA �
4
ffiffiffi
�
p

r2Að1� e2
(AA)Þ

�
ðDB is similarly defined)

and

� � 2
ffiffiffiffiffiffi
2�
p
ð1þ e(AB)Þ

ðrA þ rBÞ2

�

mAmB

ðmA þ mBÞ2
:

DA and DB can be interpreted as dissipation factors because
they vanish in the limit of elastic collisions. However, such a
limit is not relevant in our model in which dissipations are
always important. It is easy to see that the case of a single
temperature, i.e., TA ¼ TB or �A ¼ �B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mA=mB

p
, is in

general not a possible solution to eq. (5). Hence the
coexistence of two temperatures for two different grain
types is a generic phenomenon due to the asymmetric
properties of the grain types. Furthermore, by directly
iterating eq. (5), one can readily see that the solutions for �A

and �B can be put into the forms

�A ¼
v

DANApð�Þ

and

�B ¼
v

DBNBqð�Þ
;

for some function p and q depending on the parameters.
Only the dependence on � is explicitly written to emphasis
the most crucial parameter in this problem. Figure 3(a)
shows typical behavior of pð�Þ and qð�Þ as solved from
eq. (5). pð�Þ approaches to 1 for large �, whereas qð�Þ
increases with �. In ref. 22, it was assumed the functional
forms of pð�Þ ¼ f2� ½1=ð1þ �Þ�g=2 and q ¼ 2p for numer-
ical solutions of the flux model. Here we can examine how
good is such an assumption. From our theoretical result, p

and q are not trivially related by a constant factor and thus
the assumption of q ¼ 2p is not good quantitatively, but it
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Clustering in One Compartment (SS)

Oscillation (OS)
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V
 (

cm
 /s

ec
)

χ

Fig. 2. (Color online) Phase diagram of binary mixture of steel and glass

beads under vibration.
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does give qualitative correct features of the system. On the
other hand, the assumed form of pð�Þ ¼ f2� ½1=ð1þ �Þ�g=2
does provide a reasonable approximation to the actual pð�Þ
from our calculation. As shown in Fig. 3(b) for pð�Þ for
different mass ratios, as least for some range of parameters,
the assumed form of pð�Þ is rather good. The functions pð�Þ
and qð�Þ can also be measured experimentally and these
results will be reported elsewhere.28)

3.3 Temperature oscillations and flux model
Let us now consider the case as shown in Fig. 4 with

two different types of grains: A and B. For such a bi-disperse
gas in a two compartment system, relevant parameters
are: NA ¼ NAL þ NAR, NB ¼ NBL þ NBR, �L ¼ NAL=NBL,
and �R ¼ NAR=NBR. For high v, we will have: NAL=NA ¼
NBL=NB ¼ 1=2 (i.e., �L ¼ �R ¼ �0), TAL ¼ TAR, and TBL ¼
TBR with TB < TA. When the strength of shaking is lowered,
one will come to a point at which only A-grains are free to
exchange between LC and RC. When this happens, the
system is similar to that of a single type of A, and our
arguments about clustering will be applicable. That is: there
will be an unstable evaporation and condensation of A
(upper left in Fig. 4).

However, the situation here is more complicated because
there will be changes in �L and �R during this process.
Figure 4 illustrates schematically the situation. When grains
A evaporate from RC and condense into LC, both TAL and
TBL are lowered while those in RC will be raised. When
enough of grains A are evaporated from RC, the TBR will be
raised and it can be so high that the grains B start to
evaporate from RC and condense in LC too (upper right in
Fig. 4). Since this is an unstable situation, once it happens,
more of grains B will jump from RC to LC. However, when
grains B start to jump from RC to LC, TAL starts to rise too.
When enough B has jumped from RC to LC, TAL will be so
high that the grains A start to jump from LC back to RC
(lower left in Fig. 4). Again, this is an unstable situation
which will lead to most of the grain A to jump from LC to
RC (lower right in Fig. 4). That is: there is an oscillation in

grains A. Similar arguments will show that there will also be
oscillations in grains B too.

Quantitative flux model can be constructed with the above
physical picture. Suppose a slit of area S is open at a height h
on one side of the vertical wall separating the two compart-
ments, the flux of �-type grains (� ¼ A or B) through the
slit dN�=dt can be calculated as follows. The horizontal
velocity distribution follows a zero-mean Gaussian distribu-
tion with variance �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT�=m�
p

, which is also the mean
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χ
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)

+1/[2(1 )]−

(a) (b)

Fig. 3. (Color online) (a) Theoretical calculations of the functions pð�Þ and qð�Þ. e(AA) ¼ 0:35, e(AB) ¼ 0:30, e(BB) ¼ 0:25, and mA=mB ¼ 0:25. (b)

Theoretical results of the functions pð�Þ for different mass ratios of the binary GGs. Value of restitution coefficients are the same as in (a). The

approximated functional form of pð�Þ ¼ f2� ½1=ð1þ �Þ�g=2 (solid curve) is plotted showing that it gives good qualitative description.

A

B

A

B

A

B

A
B

LC RC

Fig. 4. (Color online) Schematic diagrams showing the phenomenon of

temperature oscillation in a two-compartment system with a bi-disperse

granular system. Temperature or grain oscillation of A-grains is

illustrated in the following time sequence: Upper left: fluctuations cause

the evaporation of A-grains from RC to LC. Upper right: TBR becomes

higher and unstable evaporations of B in RC begins. Lower left: TAL

becomes higher and unstable evaporations of A in LC begins. Lower

right: most A-grains are now in the RC, TBL becomes higher and B grains

can evaporate and jump from LC to RC. See text for details.

J. Phys. Soc. Jpn., Vol. 78, No. 4 SPECIAL TOPICS P.-Y. LAI et al.

041001-5



horizontal speed. Thus the flux escaping from the slit is
given by �dN�=dt ¼ S��n�ðhÞ, using the barometric distri-
bution in eq. (2), one has

�
dN�

dt
¼

SgN�

���
exp �

gh

�2
�

� �
: ð6Þ

Since �A ¼ v=½pð�ÞNADA�, hence the flux of A grains
leaving the compartment is given by

�
dNA

dt
¼ KA

N2
A

v=pð�Þ
exp �aA

NA

v=pð�Þ

� �2
( )

ð7Þ

where

KA �
SgDA

�

and

aA � ghD2
A ¼

h

g

KA�

S

� �2

:

The balance of the fluxes of A and B between RC and LC
gives:

1

KA

_NNAL ¼ �
N2

AL

vAð�LÞ
exp �aA

N2
AL

v2
Að�LÞ

� �

þ
ðNA � NALÞ2

vAð�RÞ2
exp �aA

ðNA � NALÞ2

v2
Að�RÞ

� �
1

KB

_NNBL ¼ �
N2

BL

vBð�LÞ
exp �aB

N2
BL

v2
Bð�LÞ

� �

þ
ðNB � NBLÞ2

vBð�RÞ
exp �aB

ðNB � NBLÞ2

v2
Bð�RÞ

� �
ð8Þ

where aB � ghD2
B.

With these notations, we have:

kBTA ¼ mA

vA

DANA

� �2

and

kBTB ¼ mB

vB

DBNB

� �2

:

The two velocities vA and vB are related to the shaking
velocity as: vA ¼ v=pð�Þ and vB ¼ v=qð�Þ for some general
functions p and q where @p=@NB < 0 and @q=@NA > 0. The
requirements on @p=@NB and @q=@NA are used to implement
our assumption that the temperature of grains A is raised by
the presence of B while the presence of grains A lowers the
temperature of grains B. Obviously, NAL ¼ NA=2 and NBL ¼
NB=2 is a fixed point but it will be stable only when v is
large. When v is smaller than a threshold vc, it will become
unstable and turn into a limit cycle. This has been
demonstrated in22) for the assumed functional forms: pð�Þ ¼
f2� ½1=ð1þ �Þ�g=2 and q ¼ 2p by numerically solving
eq. (8).

3.4 Hopf bifurcation at vc
To investigate in more detail analytically the transition

from the homogeneous uniform state to the oscillating state,
we define the deviation from the fixed point NAL ¼ NA=2
and NBL ¼ NB=2 by 	A ¼ NAL=NA � ð1=2Þ and 	B ¼
NBL=NB � ð1=2Þ, the governing equations can be put into
the form

_		A ¼ �Fð	A; 	BÞ þ Fð�	A;�	BÞ ð9Þ
_		B ¼ �Gð	A; 	BÞ þ Gð�	A;�	BÞ ð10Þ

where F and G are positive functions

Fð	A; 	BÞ ¼
KANA

v

1

2
þ 	A

� �2

pð	A; 	BÞ

(

� exp �
aAN

2
A

v2

1

2
þ 	A

� �2

p2ð	A; 	BÞ

" #)
ð11Þ

Gð	A; 	BÞ ¼
KBNB

v

1

2
þ 	B

� �2

qð	A; 	BÞ

(

� exp �
aBN

2
B

v2

1

2
þ 	B

� �2

q2ð	A; 	BÞ

" #)
ð12Þ

and pð	A; 	BÞ and qð	A; 	BÞ are function derived from pð�LÞ
and qð�LÞ respectively; here we use the same notations for
convenience. To investigate the behavior near the ð	A; 	BÞ ¼
ð0; 0Þ fixed point, the above equations are expanded for small
	’s,

_		A ¼ �2 	AFA þ 	BFB þ
1

2
	A	

2
BFABB þ

1

2
	2A	BFAAB

�

þ
	3A
6
FAAA þ

	3B
6
FBBB þ � � �

�

_		B ¼ �2 	AGA þ 	BGB þ
1

2
	A	

2
BGABB þ

1

2
	2A	BGAAB

�

þ
	3A
6
GAAA þ

	3B
6
GBBB þ � � �

�
ð13Þ

where we use the notation

FA �
@F

@	A

����
ð0;0Þ
;

FAAB �
@3F

@2	A@	B

����
ð0;0Þ
;

etc. to represent the corresponding derivatives and simi-
larly for G. It is clear from eq. (13) that eigenvalues
of the Jacobian matrix are �ðFA þ GBÞ 	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFA þ GBÞ2 � 4ðFAGB � FBGAÞ

p
, which depend on the

values of the parameter v. As observed in experiments and
numerical solutions of eq. (8), when v is lowered, Hopf
bifurcation occurs in which the stable fixed point gives way
to oscillatory limit cycle at vc. Thus the phase boundary of
the Hopf bifurcation can be solved from ðFA þ GBÞjvc

¼ 0

which leads to the phase diagram of vc versus �0. The
emerging frequency at the Hopf bifurcation point is given
by !c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFAGB � FBGAÞjvc

p
. For a given value of �0 ¼

NA=NB, the corresponding vc is calculated from ðFA þ
GBÞjvc

¼ 0. Using pð�Þ ¼ f2� ½1=ð1þ �Þ�g=2, the phase
boundary for the Hopf bifurcation is shown in Fig. 5
together with the experimental data for comparison. The
agreement is reasonably well though large deviation occurs
for small � presumably due to the approximation of pð�Þ ¼
f2� ½1=ð1þ �Þ�g=2 is less satisfactory in this regime. To
justify more rigorously the emergence of oscillation is
through a supercritical Hopf bifurcation, one can apply a
theorem in Guckenheimer and Holmes29) to the system
described in eq. (13) which translates in the present case to
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the condition that supercritical Hopf bifurcation occurs if
ðFAAA þ GAABÞFB > ðGBBB þ FABBÞGA. Using the function
form of pð�Þ ¼ f2� ½1=ð1þ �Þ�g=2, and by explicitly
calculating the derivatives, we have verified indeed the
above condition holds; confirming the supercritical Hopf
bifurcation. For supercritical Hopf bifurcation, the amplitude
of oscillation increases continuously as � 
 ðvc � vÞ1=2.
This is also verified by our numerical solutions of the
differential equations (8). It should be noted that the
possibility of a Hopf bifurcation leading to a limit cycle
dynamics was also speculated by Evesque.30)

3.5 Saddle-node bifurcation at vf
We have found experimentally22) that for v < vc, granular

clock appears and the period of the oscillation (�) increases
as v is lowered until there is no more oscillation at v ¼ vf

and the system is in a segregated/clustering state. In fact the
period � decreases with (v� vf). If one considers increasing
v from a very low value, then at vf oscillation emerges
suddenly, which is a characteristic of the saddle-node (or
‘‘blue-sky’’) bifurcation. In fact, our numerical solution of
the dynamical equations (8) indicates that new asymmetric
fixed point pairs emerge for v < vf . Although we have no
rigorous proof that the system undergoes a saddle-node
bifurcation, the numerical behavior of the systems strongly
suggested it is the case.

Assuming saddle-node bifurcation occurs at vf , one can
proceed to compute the phase boundary of vf . The
calculation is somewhat tedious and we shall just outline
the procedure. Defining nA � NAL=NA and similarly for
nB and denoting the new asymmetric fixed point by
ðn�A; n�BÞ 6¼ ð1=2; 1=2Þ. ðn�A; n�BÞ satisfies

Fðn�A; n
�
BÞ ¼ Fð1� n�A; 1� n�BÞ;

Gðn�A; n
�
BÞ ¼ Gð1� n�A; 1� n�BÞ

ð14Þ

where F and G are positive functions

FðnA; nBÞ ¼
KANA

v
n2

ApðnA; nBÞ
�

� exp �
aANA

v2
n2

Ap
2ðnA; nBÞ

� �	
ð15Þ

GðnA; nBÞ ¼
KBNB

v
n2

BqðnA; nBÞ
�

� exp �
aBNB

v2
n2

Bq
2ðnA; nBÞ

� �	
: ð16Þ

At vf , saddle-node bifurcation occurs, there is a zero
eigenvalue for the Jacobian matrix29) for the dynamics near
ðn�A; n�BÞ, which leads to the equation for determining the
phase boundary of vf : ðF�AG�B � F�BG

�
AÞjvf
¼ 0, where we use

the notation

F�A �
@F

@nA

����
ðn�

A
;n�

B
Þ
;

etc. Detail results and comparison with experimental data
will be presented in our future work.28)

4. Other Interesting Scenarios

The mechanism of the clustering phenomenon in mono-
disperse grains in a 2-compartment vibrating chamber
originates from the bifurcation of a single nonlinear dynamic
equation, whereas limit cycles occur for the bi-disperse
grains in the case of a 2-compartment system resulted from
the Hopf bifurcation of a system of two nonlinear differential
equations. Thus one may speculate that for more compli-
cated systems governed by three or more nonlinear coupled
differential equations, the resulting dynamics will be richer;
and can even be chaotic. Here we shall investigate several
case of grains in compartmentalized systems governed by
three or more coupled equations and examine the possible
resulting dynamics.

4.1 Monodisperse grains in M-compartments
Consider a single type of grains in a container with M

cyclic compartments and grains in each compartment can
transport to two neighboring compartments through slits (see
Fig. 6). This model for M � 3 is first studied refs. 13 and 16.
Denote the number of grains in the jth compartment by Nj,
using a similar flux model, the equations of motion are

1

K
_NNj ¼ �

2N2
j

v
exp �a

Nj

v

� �2
" #

þ
X
i¼j	1

N2
i

v
exp �a

Ni

v

� �2
" # ð17Þ

where K has a similar definition as in previous sections, and
the periodic boundary condition is understood (i.e., the index
j ¼ 0 and M þ 1 is taken to be j ¼ M and 1 respectively). It
is easy to see that the equipartition solution, Nj ¼ N=M for
j ¼ 1; 2; . . . ;M is always a fixed point. To investigate the

1 2 m

Fig. 6. A M-compartment system with periodic boundary condition.
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Fig. 5. (Color online) Phase boundary of normalized critical vibration

strength vs �0. Dashed curve is the theoretical result obtained from the

flux model. The experimental data (symbols) are also shown for

comparison.
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stability of this fixed point, consider 	j � Nj=N � 1=M and
the equations become

_		j ¼ �2Fð	jÞ þ Fð	jþ1Þ þ Fð	j�1Þ for j ¼ 1; 2; . . . ;M ð18Þ

where

Fð	Þ ¼
KN

v

1

M
þ 	

� �2

exp �
aN

v2

1

M
þ 	

� �2
" #( )

ð19Þ

again the periodic boundary conditions for the index j is
understood. The fixed points with the associated bifurcations
and the coarsening kinetics have been studied in detail in
refs. 31 and 32. No oscillation nor chaotic dynamics is
reported.

4.2 Bi-disperse grains in M-compartments
Consider now two types of grains A and B in a container

with M cyclic compartments, using the flux model, the
governing dynamical equations are

1

KA

_NNAj ¼ �
2N2

Aj

vAð�jÞ
exp �aA

N2
Aj

v2
Að�jÞ

" #

þ
X
k¼j	1

N2
Ak

vAð�kÞ
exp �aA

N2
Ak

v2
Að�kÞ

� �

1

KB

_NNBj ¼ �
2N2

Bj

vBð�jÞ
exp �aB

N2
Bj

v2
Bð�jÞ

" #

þ
X
k¼j	1

N2
Bk

vBð�kÞ
exp �aB

N2
Bk

v2
Bð�kÞ

� �

for j ¼ 1; 2; . . . ;M ð20Þ

where �k � NAk=NBk is the ratio of A to B grains in the kth
compartment, and vA and vB have similar definitions as in
the case of 2-compartments. Again the periodic boundary
conditions for the index j is understood for cyclic compart-
ments. Note that the conditions

PM
k¼1 NAk ¼ NA andPM

k¼1 NBk ¼ NB hold and the actual number of independent
coupled equations is 2ðM � 1Þ. The simplest case for cyclic
compartment is for M ¼ 3 (with 4 coupled equations) and
some preliminary results were presented in ref. 33 in which
some irregular or random dynamical behavior was reported
suggesting the possibility of chaos. On the other hand, if the
compartments are arranged linearly (non-cyclic) with walls
on both ends, regular periodic oscillations were observed in
ref. 33.

4.3 Tri-disperse grains in 2-compartments
This is a scenario resulting in only three nonlinear coupled

dynamical equations and could possibly be the simplest case
that would show chaotic dynamics. Consider three types of
grains A, B, and C in a system consisting of left and right
compartments. Denoting the ratios of grains pairs by �B �
NA=NB and �C � NA=NC. Using similar method as in
previous sections, one arrives at the governing dynamical
equations

1

KA

_NNAL ¼ �
N2

AL

vAL

exp �aA

N2
AL

v2
AL

� �

þ
ðNA � NALÞ2

v2
AR

exp �aA

ðNA � NALÞ2

v2
AR

� �

1

KB

_NNBL ¼ �
N2

BL

vBL

exp �aB

N2
BL

v2
BL

� �

þ
ðNB � NBLÞ2

vBR

exp �aB

ðNB � NBLÞ2

v2
BR

� �
1

KC

_NNCL ¼ �
N2

CL

vCL

exp �aC

N2
CL

v2
CL

� �

þ
ðNC � NCLÞ2

vCR

exp �aC

ðNC � NCLÞ2

v2
CR

� �
ð21Þ

where aC is defined in a similar way as aA in previous
section, vAL � v=pAð�BL; �CLÞ and similarly for vBL, vCL,
etc. The functions pA, pB, and pC have similar roles as
the functions p and q for the bidisperse case in previous
sections. Note that NB=NC ¼ �C=�B and hence it is sufficient
to use �B and �C as independent variables for the functions
pA, pB, and pC. The detail dynamics of this system will be
reported elsewhere.

5. Concluding Remarks

In this article, we have explained the notions of unstable
evaporation/condensation and multiple temperatures for a
heterogeneous granular gas system. These are unique
properties of granular gases and there is no counter part of
these concepts for a molecular gas in thermal equilibrium.
With these notions, we can understand the intriguing
phenomena of Maxwell’s demon as well as the granular
clock. These phenomena are possible because of the non-
equilibrium nature of the system and the strong nonlinear
dependence of local energy dissipation on the configuration
of the system (granular density distribution); giving rise to a
wide varieties of interesting stationary as well as dynamical
patterns. However, our studies are being carried out in a self
consistent manner by assuming the existence of multiple
granular temperatures in a heterogeneous system. It would
be important to establish the existence of these multiple
granular temperatures by more detailed experiments. For
example, measurement of fluxes in experiments would
provide independent tests of our assumption. Experiments
of this kind are now well in progress and their results will be
reported soon.
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