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A review is given of our previous work on the clustering,

especially the oscillatory clustering for shaken fluidized granular

matter in connected compartments, as examples for pattern

formation and bifurcations in far from equilibrium systems. Flux

model is presented and discussed for mono-disperse and bi-

disperse granular systems. Comparison of the flux model with

simulation results is given. They show reasonably well agree-

ments. Besides the homogeneous (HOM), segregation (SEG),

and oscillatory (OSC) states, two new stationary states (d-OSC

and s-HOM) in the bi-disperse granular system are predicted by
our simulation. In our recent work these two new states are

observed experimentally, and their flow diagrams are obtained

based on the fluxmodel,which shows qualitative agreementwith

the experimental results. Discussions of variations of the above

system are also given, such as adding an asymmetric structure,

changing the number of compartments from two to three, and

addingmore than two types of particles. This compartmentalized

fluidized granular system turns out to be a goodmodel system for

studying nonlinear dynamics and pattern formation of far from

equilibrium systems.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Pattern formation is one of the
important features of systems far from equilibrium [1–5].
As a non-equilibrium system, patterns in shaken fluidized
granular gas systems have caught much attention of
physicists in recent years [6–14]. Such a system has emerged
to be important test bed to investigate the applicability of
dissipative kinetic theory in nonlinear dynamics and
bifurcation theory.

Clustering is one of the patterns most commonly
observed in fluidized granular systems [15–20]. In such
systems, the clustering arises from the intrinsic inelastic
collisions between particles. The particles collide more
frequently in a region slightly denser than the others, and
hence more energy is dissipated in this dense region. This
results in the formation of a cluster of slowly moving
particles, while relatively dilute regions are depleted, where
only a few rapid particles remain.

This clustering process can be clearly viewed in a setup
with two connected compartments [21], where vertical
shaking spontaneously leads to one well-filled and one
nearly empty compartment. This clustering behavior
demonstrates the suppositive ‘‘Maxwell’s demon’’ exper-
iment in which the energy dissipation between particles acts
as the demon to preferentially let particles pass only in one
direction to cluster in one of the compartments [22].

More interesting clustering patterns can be found when
the particles contain a mixture of bi-disperse grains which
are different in size, mass, or coefficient of restitution. Such a
mixture shows competitive clustering behavior [23, 24]. By
tuning the shaking strength, the clustering can be directed
either toward the compartment initially containing mainly
the small particles, or to the one containing mainly the large
particles. This kind of segregation (SEG) clustering behavior
can also be found inN connected compartments, for example
in three connected compartments it is found that for
sufficiently strong shaking the granular gas is equi-
partitioned, but for lower shaking intensity the gas will
cluster in one compartment [25–28].

As a nonlinear dynamical system, it is expected that
oscillatory (OSC) clustering shall be happening in such a
two-compartment bi-disperse granular system. Simulations
by Costantini et al. [29, 30] and Lambiotte et al. [31] in 2005
demonstrated the existence of the so-called ‘‘granular
clock.’’ This OSC clustering was soon experimentally
observed byMiao et al. [32] in a compartmentalized mixture
of millets and mung beans, and then this granular clock
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 (online colour at: www.pss-a.com) Sketch of a typical
two-compartment system. Two identical compartments are con-
nected by a slit at a certain height.

Figure 2 (online colour at: www.pss-a.com) Competitive cluster-
ingexperiment inbi-dispersegranulargases [23, 24].Withmoderate
shakingstrength, cluster is formed incompartmentA,which initially
contains more large particles. At a lower shaking strength, particles
cluster in the compartment initially with more small particles
(compartment B).
phenomenon was performed with two types of soda lime
glass particles by Viridi et al. [33] and explained by
considering vertical SEG effect.

In recent few years, we have studied these clustering
behaviors by experiments, simulations, and modeling.
Experimentally we observed the OSC clustering in a bi-
disperse system with grains of the same size, but of different
masses; by measuring the oscillation period and amplitude
[34, 35] we verify that the transition from SEG state to OSC
state is an infinite-period bifurcation, and from OSC state to
homogeneous (HOM) state is a supercritical Hopf bifur-
cation. By molecular dynamics simulation, we found two
new stationary OSC states: a degenerate oscillation (d-OSC)
state and a state with large particles segregated and small
particles homogeneously distributed (s-HOM) [36], which
have been verified in our recent experiments [37]. We have
obtained flow diagrams of the states mentioned above based
on a fluxmodelmodified fromworks byMikkelsen et al. [23,
24]. The transition from d-OSC state to oscillation state
demonstrates a homoclinic gluing bifurcation [37]. A
comparison of simulationwith the fluxmodel was performed
to quantitatively verify the validity of the flux model.

In this paper, we will first review the experimentally
observed patterns in compartmentalized granular gas
systems and then introduce the flux model that we have
adopted, which reasonably well explains the observed
clustering behavior. In the final section a discussion is
presented of some variations of the compartmentalized
structure, such as introducing asymmetric settings for
imperfect bifurcation, changing the number of compart-
ments, and adding more than two types of particles in the
system. At the end, some final remarks conclude the paper.

2 Experimental observation The experimental
setup consists a container made of two identical compart-
ments, which are connected by a narrow opening at the wall
in between the compartments, as is shown in Fig. 1. The setup
is driven by a shaker connected to the bottom of the
container. Gaining kinetic energy by colliding with the
driving bottom plate, particles may jump from one compart-
ment to the other through the opening.

When a number of particles are added randomly to this
two-compartments system, depending on the shaking
strength, particles will eventually either equally distribute
in the two compartments, or cluster in one of the com-
partments. At higher shaking strength, particles are able to
freely jump through the wall opening and equally distribute
in the two compartments. As the strength goes lower,
particles in the compartmentwith higher number densitywill
encounter more inelastic collisions, which further reduce the
granular temperature in this compartment, and more
particles from the other compartment will flow into this
compartment. Finally, the system settles at an asymmetric
distribution state with dilute phase in one compartment and
dense phase in the other. This spontaneous symmetry-
breaking phenomenon is known as Maxwell’s demon in the
granular gas system, which was first observed in 1996 by
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Schlichting and Nordmeier [21] and successfully explained
by a flux model derived by Eggers [22] in 1999.

In the mono-disperse granular gas, particles will always
preferentially cluster in the compartment where more
particles are initially placed. In a two species system, the
coupling between the two species will lead to a competitive
clustering behavior (as shown in Fig. 2). The velocity
of a large or heavy particle when colliding with a smaller or
lighter particle will be reduced due to conservation of
momentum, while the smaller or lighter particle will gain
velocity after such a collision. A system starts from the same
www.pss-a.com
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Figure 3 (online colour at: www.pss-a.com) OSC clustering
observed in Ref. [34]. Phase diagram shows the HOM, OSC, and
SEG states for different shaking velocities v and number ratiosx0. A
full cycle of the oscillation is shown in snapshots (a)-(e).

Figure 4 (a) Oscillatory curves of the d-OSC state [fiz � Niz=Ni0,
whereNiz is theparticlenumberof species i in compartmentzandNi0

is the total number of species i, i¼ 1 (2) for light (heavy) particles,
z¼ 1 (r) for left (right) compartment; dark solid lines indicate f1l,
gray solid linesf1r, dark dashed linesf2l, and gray dashed linesf2r],
and (b) the corresponding phase orbit with two possible
branches [36].

Figure 5 (online colour at: www.pss-a.com) Demonstration of an
oscillation cycle in an OSC state: (a)-(b)-(c)-(d)-(g), and that in a
d-OSC state: (a)-(b)-(e)-(f)-(g).White balls are light particles,while
red (dark) ones are heavy particles.
initial state, say, more large balls and less small ones in
compartment (A); particles will always cluster in the
compartment A at some moderate driving strength, and
cluster in the compartment B at a lower driving strength [23,
24].

In a two species systemnot only competitive clustering is
observed, cyclic distribution among the two compartments,
the granular clock phenomenon, has also been predicted by
simulations [29–31, 36] and observed by experiments [32–
34, 39]. This periodic distribution of bi-disperse grains in the
two compartments shall not be solely explained by the Brazil
nut effect (BNE) or the reverseBNE (RBNE) of vertical SEG
as discussed in some previous papers [31–33].

In our experiment, an OSC state is observed in two
species with the same size but different masses (Fig. 3) [34].
In the experiment, same-size glass beads and steel balls with
a number ratio x0 ranging from 7:1 to 1:1 are filled in these
two compartments. In this system particles gain energy
through the shaker. It is found experimentally that the
shaker’s maximum shaking velocity v is a controlling
parameter to the clustering behavior. At a fixed x0, when
the shaking velocity v is lower than a transition velocity vf,
the system is in a segregated state similar to what is observed
inRefs. [23, 24].As the shaking velocity v iswithin a range of
two critical velocities vc > v > vf , particles will periodically
distribute in these two compartments. As v goes higher than
another transition velocity vc, particles will homogeneously
distribute in both compartments. The phase diagram is
shown in Fig. 3. The OSC cycle is shown in Figs. 3(a)-(e):
particles at first cluster in the left compartment [Fig. 3(a)].
Heavy particles are more likely to stay near the bottom and
transfer energy to the lighter ones via collision. Those lighter
particles lifted up by the heavy ones are able to go through
the wall opening. With less or no help from heavy particles,
they cool down and cluster in the other compartment
www.pss-a.com
[Figs. 3(b)-(c)]. Once most of the light particles emigrate,
the heavy ones are able to follow the lighter ones to jump
through the opening [Figs. 3(c)-(d)]. The same cycle will
repeat to let particles jump from the other compartment back
to the original one [Figs. 3(d)-(e)].

The oscillation amplitude and period at a certain driving
velocity v near the transition point are studied, which
indicate that the transition from HOM state to OSC state is a
supercritical Hopf bifurcation and the transition from SEG
state to OSC state is via an infinite-period bifurcation (as
shown in the following paragraph).

As the number of heavy particles is increased, a new
OSC state [degenerate OSC (d-OSC) state] is found by
numerical simulation [36] (Fig. 4) and then observed
experimentally [37] (Fig. 5). In the simulation, event-driven
algorithm for 3D systems is used. Particles are considered as
perfect rigid spheres that deformations during collisions are
ignored. Particle–particle and particle–boundary collisions
are considered as instantaneous events. Between the two
events the particles move freely keeping parabolic paths
under gravitational acceleration g. At an event of collision
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 6 Experimental confirmation of s-HOM and d-OSC state
and a phase diagram obtained in Fb�v plane [37].
the velocities of particles after contact are computed from the
velocities just before the contact. The collisions between
particle–particle and particle–boundary are considered to be
inelastic with normal coefficient of restitution fixed to be 0.9.
In the simulation, two species with different sizes are
considered. It is found that when decreasing x0 to a certain
value, there appears a d-OSC state, as shown in Fig. 4. In this
state, the large particles mainly stay in one of the
compartments with only a small number of them participat-
ing in the oscillation, while most of the small ones oscillate
between the two compartments. Increasing the driving
velocity, a concomitant state of the d-OSC state is observed
that the small beads are homogeneously distributed
(s-HOM), while the large ones show an asymmetric SEG.

An experiment is later performed to verify the existence
of these two new states found in simulation. Steel particles
with radius 0.75mm and glass particles of 0.5mm (the mass
ratio reaches 9:1) are used. The total number of particles
is fixed at 1000. When the portion of heavy particles Fb

reaches 0.35, two types of oscillation states are observed at
different driving velocities. When the driving velocity is
v ¼ 0:15 m=s, particles fully oscillate in two compartments
[as demonstrated in Figs. 5(a)-(b)-(c)-(d)-(g)]. As the driving
velocity increases to 0.19m/s, a d-OSC state appears
[Figs. 5(a)-(b)-(e)-(f)-(g)]. Initially, light particles in the
presence of the heavy ones gain kinetic energy to jump from
the left compartment to the right one. With no help of the
heavy particles, light particles will condense in the right
compartment [Figs. 5(a)-(b)]. At v ¼ 0:15 m=s, heavy
particles are able to flow into the right compartment
following the light ones. When all the particles are in the
right compartment, the same cycle will repeat that all the
particleswill flowback to the left compartment and complete
a full oscillation cycle [Figs. 5(c)-(d)-(g)]. As v goes higher
to 0.19m/s, for a d-OSC cycle, light particles are able to flow
back to the left compartment with the help of only a small
portion of the heavy particles in the right compartment
[Fig. 5(e)]. With the absence of light particles in the right
compartment, the small portion of heavy particles will also
jump back into the left compartment [Figs. 5(f)-(g)]. This
completes the oscillation cycle with only a small amount of
heavy particles participating in the oscillation cycle. We call
this the d-OSC state. As the driving velocity goes even
higher, say 0.20m/s, with the help of only a small portion of
heavy particles participating the oscillation, the small
particles are able to oscillate fast enough to be considered
as homogeneously distributed. We call this s-HOM state.
Based on the experimental observation, a phase diagram is
plotted in Fig. 6. The controlling parameters are the driving
velocity v and the percentage numbers of steel balls Fb.

3 Flux model The experimentally observed clustering
behaviors can be understood using a flux model, which
describes the particle flow from one compartment to the
other as a function of the shaking strength and the number of
particles in the compartment. Flux models have been
proposed and discussed in some previous works [22–25,
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
29–34, 40–44]. Following Eggers’ derivation of a mono-
disperse granular gas flux function [22],Mikkelsen et al. [23,
24] have extended the model to bi-disperse granular gases.
Their extended model has shown excellent agreement with
experiments and simulations for N-compartment clustering
and its dynamics [28]. However, in their works no OSC
clustering has ever been predicted or observed. In the
following subsections, we will first review their model and
then extend the model to OSC states to compare with our
experimental and simulation results.

3.1 Eggers’ model In a two-compartment mono-
disperse granular gas system, the evolution of N particles
in one of the compartments can be written as
@N

@t
¼ �F Nð Þ þ F N0�Nð Þ: (1)
FðNÞ is the flux function which is assumed to be
independent of time, andN0 is the total number of particles in
the system. As the granular gas is dilute enough, the equation
of state is written as
p ¼ nkBT ; (2)
and the momentum balance and mass conservation require
@p

@z
¼ �mgn; (3)
and
N ¼
Z þ1

0

nðzÞdz: (4)
p is the pressure of the granular gas, n the granular number
density, kB the Boltzmann’s constant and is set to be 1, T the
granular temperature, m the mass of the particle, and g is the
gravitational acceleration. From Eqs. (2)–(4), the number
www.pss-a.com



Phys. Status Solidi A 207, No. 12 (2010) 2743

Feature

Article
density can be solved as
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nðzÞ ¼ mgN

VkBT
e�mgz=kBT ; (5)
whereV is the ground area of each compartment. The flux at
location h is proportional to the product of number density
and mean horizontal velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=pm

p
written as
FðNÞ ¼ C

ffiffiffiffiffiffiffiffi
m

kBT

r
Ne�mgh=kBT ; (6)
where C is equal toWHg
� ffiffiffiffiffiffi

2p
p

V, and h is the location of the
lower edge of the opening (with an opening size H) from the
bottom. The explicit form of kBT is written as follows [28]:
Figure 7 Demonstration for stable and unstable HOM solutions.
Gray circles present the stable solution, while hollow circle presents
kBT ¼ V2

16p 1�e2ð Þ2r4
mv2

N2
; (7)
the unstable solution. HOM solution a is stable, and HOM unstable
solution b loses its stability and changes to asymmetric stable
solutions b1 and b2.
where r is the radius of the particle, v the driving velocity
and e is the normal coefficient of restitution (in this model
no rotation and friction force are considered).

It is useful to study the stability of the HOM solution of
Eq. (1) to investigate the essentials of the clustering
phenomenon without knowing the explicit form of the flux
function. The HOM distribution N ¼ N0=2 is a trivial
solution to Eq. (1). We apply a perturbation around this
solution N ¼ N þ dN, and substitute it into Eq. (1), then dN
satisfies
@dN

@t
¼ �F N þ dN

� �
þ F N þ dN

� �
: (8)
Linearizing Eq. (8) around the HOM solution, it becomes
@dN

@t
¼ �2

@FðNÞ
@N

jN¼NdN: (9)
For a stable solution near N, @FðNÞ
@N jN¼N > 0 must be valid.

Therefore, if HOM solution N is located at the rising part of
the flux function curve, the HOM state is a stable solution as
demonstrated by the point a in Fig. 7. However, if N is
located at the declining part of the flux function, the HOM
state is unstable as demonstrated by the point b in Fig. 7 in
that bwill evolve into two asymmetric stable states b1 and b2
under any small perturbation.

3.2 Bi-disperse case Similar to the mono-disperse
granular gas, the evolution ofNi particles (i¼ a for smaller or
lighter particles, b for larger or heavier particles) can be
written as
@Ni

@t
¼ �Fi Na;Nbð Þ þ Fi Na0�Na;Nb0�Nbð Þ: (10)
FiðNa;NbÞ is the flux function for species i, and expressed as
Fi Nið Þ ¼ C

ffiffiffiffiffiffiffiffiffi
mi

kBTi

r
Ne�migh=kBTi ; (11)
where mi and Ti refer to the mass and granular temperature
of species i, respectively. For simplicity, consider the
.pss-a.com
granular temperatures of the two species to be the same:
Ta ¼ Tb ¼ T . Under this assumption, the explicit form of
the temperature can be deduced based on energy conserva-
tion:
kBT ¼ v2m

16p 1�e2ð Þ2
: (12)
m is the effective mass written as
m ¼ V

r2
maNa þ mbNbffiffiffiffiffiffi

ma
p

N2
a þ

ffiffiffiffiffiffi
mb

p
N2
b þ mabNaNb

� �2
; (13)
where mab equals 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mamb=ðma þ mbÞ

p
.

In Refs. [23, 24], the particle–boundary collisions are
considered elastic. In the real experiment, these collisions are
always inelastic. When the system is dilute, the energy
dissipation due to particle–particle collisions is comparable
to that of the particle–boundary collisions. The dissipation
due to particle–boundary collisions, therefore, may not be
negligible. Taking into account the inelastic particle–
boundary collisions, we have modified the flux function
(see Ref. [37] formore details), and applied this modification
to numerically solve Eq. (10); we are able to reproduce the
five states mentioned in the previous section, as are shown in
Fig. 8: a HOM state (which is not shown in the figure), a
segregated (SEG) state, OSC state, a d-OSC state, and a small
particles homogeneously distributed (s-HOM) state. The
flux model can also qualitatively predict the transition from
the OSC state to the SEG state when the OSC frequency goes
to zero.

3.3 Verification for flux model Although the
dynamical evolutions can be obtained theoretically, and
can qualitatively match the experimental observation or
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 8 (online colour at: www.pss-a.com) Flow diagram
obtained by modified flux model with same total particle numbers
at different driving velocities. Evolution of system with specific
initial condition (black and green solid lines); black and green dot
lines correspond to @Na=@t ¼ 0, @Nb=@t ¼ 0; dashed lines are sep-
arations between two attraction basins; the system evolution direc-
tion is shown by the vector field; gray circles represent stable fixed
points, while hollow circles represent unstable fixed points [37].

Figure 9 (online colour at: www.pss-a.com) Sketch of a one-
compartment system. Red particles are the heavy particles, and
white particles are the light ones. Red rectangle on the boundary
wall represents the counting area for the flux.

Figure 10 Flux of mono-disperse FðNÞ changes with particle
number N. Black points represent simulation results, solid line
corresponds to the fitting results by Lohse’s flux model [shown in
Eq. (6)].
simulation results, we would like to know how accurate this
simplified flux model is, and which part needs improvement
if the dynamical evolution comparison does not well match.
In order to make a direct comparison of the model with the
simulation result, we adopt a one-compartment model
system (demonstrated in Fig. 9) [46].

In this simulation, we add a certain number of particles in
a one-compartment cell. After the system reaches steady
state, we count the number of hitting events within a slit area
which centers at a vertical position z on one of the cell walls
(e.g., the red area shown in Fig. 9) and average the counts
over a unit time. By changing the number of particles in the
container, we are able to get the flux function FðNa;NbÞ at a
specific area and shaking strength.

Flux results obtained by numerical study show the same
non-monotonic asymmetric feature as Eq. (6). UsingC in Eq.
(6) as the only fitting parameter, a comparison of the fitting
result with the simulation results is shown in Fig. 10. The
deviation of the two may be due to the model being
oversimplified.

When another type of particles is added into the
compartment, the flux functions are plotted in two contour
maps (Fig. 11). The flux of light particles at first increases
with the number of heavy particles, but after heavy particle
number is large enough, the energy dissipation becomes
large and the flux of light ones decreases with the number of
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-a.com
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Figure 11 Flux contour maps of bi-disperse granular gases
FiðNa;NbÞ [(a) for light particles, (b) for heavy particles]. Fitting
resultsofmodifiedfluxmodelarepresentedbyblacksolid lines [46].

Figure 12 (online colour at: www.pss-a.com) Variation of oscil-
lation amplitudeD as a function of velocity difference ðvc�vÞ1=2 for
various number ratiosx0 (defined asx0 ¼ Na=Nb). The solid line is a
fit of the data to the form D � ðvc�vÞ1=2 for small vc [34].

Figure 13 (online colour at: www.pss-a.com) Variation of oscil-
lation period t as a function of v�vf (vf is the transition velocity)
measured for various x0. The solid lines are fits of the data to the
functional form ðv�vfÞ�1

with vf being a fitting parameter [34].
heavy ones. The flux of heavy particles almost decreases
monotonically with light ones, and this is caused by the
kinetic energy lost in the transfer from heavy ones to light
ones. Fitting results with Eq. (11) are shown in Fig. 11.

The fluxmodels of mono- and bi-disperse granular gases
agree qualitatively with simulation results, which is why the
fluxmodels can successfully reproduce all states observed in
the experiment. The deviation due to the oversimplification
of the assumptions, especially the energy equipartition
between two species [38], shall be further studied by
including in the flux model two granular temperatures in
the future.

3.4 Bifurcation The transition between all the above
mentioned states corresponds to different bifurcation
behaviors. Investigating these bifurcation behaviors not
only helps us understand the behavior of particles in
compartmentalized granular systems, but also enriches our
understanding of nonlinear phenomena in other systems.
Here, we will briefly discuss the related bifurcation
behaviors in this granular system.

For amono-disperse gas, a transition from theHOMstate
to SEG state corresponds to a super-critical bifurcation.
www.pss-a.com
Recent study shows that if the curve around the peak of the
flux function is symmetric, the HOM-SEG transition might
be a hypercritical bifurcation generating a much stronger
fluctuation than a supercritical one [47].

In bi-disperse gases, six different transitions are
observed. They correspond to four different types of
bifurcation behaviors. The transition from the HOM state
to the s-HOM state is the same as that in HOM-SEG
transition. From the study of the oscillation amplitudeD near
the HOM-OSC transition, in that D � vc�vð Þ1=2 (vc is the
critical velocity) as shown in Fig. 12 which indicates the
transition is supercritical Hopf bifurcation [34].

The study of the oscillation period near the SEG-OSC
transition shows that the period approaches infinity at the
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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transition point (see Fig. 13), which indicates an infinite-
period bifurcation. The SEG to d-OSC transition is also
found as an infinite-period bifurcation.

A global bifurcation from the d-OSC state (two limit
cycles) to the OSC state (one limit cycle) is shown in
Figs. 8(c)-(d). As driving velocity decreases, both limit
cycles expand, and they are very close to the separatrix
between attraction basins of the limit cycles [dashed line,
Fig. 8(c)]. Once the limit cycle touches the separatrix, the
phase portrait is connected to the saddle nodes (0.5, 0.5) and
becomes a homoclinic orbit. When the driving velocity is
lower, the trajectory of the limit cycle crosses the separatrix
and is attracted to the other limit cycle. Because of the
symmetry of the system, the two limit cycles lose their
stability at the same time and glue to each other to one large
limit cycle (OSC state), which corresponds to a homoclinic
gluing bifurcation [Fig. 8(d)].

4 Other configurations In the above, the dynamical
behavior of mono- and bi-disperse granular gases in two
identical compartments has been well studied experimen-
tally and theoretically. The set of flux models are able to
describe behaviors of such systems.As shown in theworks of
van der Meer et al., interesting clustering behaviors such as
‘‘granular rachet’’ and ‘‘granular fountain’’ [48, 49] can be
obtained when extending the two-compartment system to
other complicated configurations. Theirworks are in amono-
disperse gas system. It is reasonable to expect some
interesting dynamical behaviors to emerge for bi-disperse
or tri-disperse gas systems. They will not only enrich the
nonlinear phenomena in a realistic system, but also give rise
to some potential means for manipulating or transporting
granular matters. Some primary results of our work are
briefly discussed below.
Figure 14 Sketch of asymmetrical compartmentalized system.
Dark gray cuboid presents the additional slab.

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
4.1 Asymmetric structure In order to geometrically
introduce an asymmetric feature, we add a slab to the bottom
of one of the compartments, say compartment A (the other
being as compartment B) (The setup can be seen in Fig. 14
[51]), to see the change of the clustering behavior.

In this setup, when the driving velocity is lower than a
critical value vc, depending on the initial state and the driving
strength particles can be distributed to either of the two
compartments, but with a higher chance to populate
compartment B, as is shown in Fig. 15. When v is higher
than vc, particles will preferentially distribute in compart-
ment B. At even higher velocity v, particles will go
asymptotically toward HOM distribution among the two
compartments. This suggests that by using this configur-
ation, we can deplete particles from compartment A to B by
adjusting driving velocity.

4.2 Bi-disperse in three compartments It is
natural to ask whether such a nonlinear system could result
in a deterministic chaos behavior if more dimensions are
b)

Figure 15 Populationratio incompartmentAversusdrivingveloc-
ity v (a) from experimental data, (b) calculated from the flux model.
Solid black points represent stable state, while open circles stand for
unstable solution of flux model. Arrows indicate the evolution
direction of the system [51].
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added into this type of system. An example is a bi-disperse
granular gas in a three-compartment system. A simulation is
performed using periodic boundary that each compartment is
connected with the other two compartments. The evolution
of the particle number Ni in compartment i can be written as
a)

b)

Figu
of tw
pane
1, re
men
(b) p

www
@Ni1

@t
¼ �2Fi Na1;Nb1ð Þ þ Fi Na2;Nb2ð Þ

þ Fi Na3;Nb3ð Þ: (14)
As the total numbers are conserved, Ni1 þ Ni2 þ Ni3 ¼ Ni0.
A comparison between simulation and flux model is shown
in Fig. 16 for Na0 ¼ 1000;Nb0 ¼ 300.

A chaotic behavior is shown in Fig. 16(a), where
particles randomly cluster in the three compartments and
this chaotic clustering behavior is achieved through a
transition from a HOM distribution state by lowering the
driving velocity. Similar irregular clustering behavior has
been observed experimentally in a cyclic three-compartment
system [50]. But such chaotic behavior is not able to be
explained by the fluxmodel. Decreasing the shaking velocity
re 16 (online colour at: www.pss-a.com) Number evolution
o species (light particles in upper panel, heavy ones in lower
l) in threecompartments (say,greensolid lines forcompartment
d dashed lines for compartment 2, black dot lines for compart-
t 3). (a) Results obtained by molecular dynamics simulation,
rediction by the flux model.

.pss-a.com
from the HOM state, instead of irregular clustering state, a
regular directional transportation is predicted (compartment
1! compartment 2! compartment 3! compartment
1. . .), as shown in Fig. 16(b). It is easy to know such coupled
differential equations has another identical-period solution
except with counter direction (compartment 3! compart-
ment 2! compartment 1! compartment 3. . .), because of
the symmetry feature of the system. The disagreement
between the simulation results and the prediction of flux
model is eliminated by introducing a white noise term into
fluxmodel which presents the intrinsic fluctuation of system.

4.3 Tri-disperse in two compartments When
another type of particles (only with different mass for
simplicity) is added into a bi-disperse two-compartment
system, the interaction between different species might
become very complicated and this might lead to more
interesting dynamical behaviors.

A tri-disperse granular gas simulation is performed
treating the third species with smallest mass as the additive
(mass ratio ma : mb : mc is 1 : 8 : 64). Because of the large
mass ratio, the assumption of energy equipartition becomes
more unreasonable. A further flux model considering
different granular temperatures is needed. Here, we just
present some primary simulation results.

In Fig. 17, total numbers of species b and species c are
fixed to be 600 and 200. All particles are equally distributed
when there are small number of lightest particles (species a)
in the system as shown in Fig. 17(a). When more of the
lightest particles are added into the system, say from 100 to
1000, species b and species c begin to oscillate in large
amplitude [Fig. 17(b)]. Similar situation happens with initial
number Nb0 ¼ 1000;Nc0 ¼ 200, particles asymmetrically
distributed in two compartments with Na0 ¼ 200 [Fig. 18].
Once more lightest particles are added in (Na0 ¼ 500), the
system changes from the SEG state to the OSC state. In both
a)

b)

Figure 17 (online colour at: www.pss-a.com) Particle number
evolution of three species i in left compartment (solid green lines
for lightest species a, dashed red lines for heavier species b, and dot
black lines for heaviest species c). For (a) Na0 ¼ 100;Nb0 ¼
600;Nc0 ¼ 200; (b) Na0 ¼ 1000;Nb0 ¼ 600;Nc0 ¼ 200.

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 18 (online colour at: www.pss-a.com) Particle number
evolutions for three species in two compartments. (a) Na0 ¼ 200;
Nb0 ¼ 1000;Nc0 ¼ 100; (b) Na0 ¼ 500;Nb0 ¼ 1000;Nc0 ¼ 100.
cases, the lightest particles are always homogeneously
distributed in compartments but the presence of species a
induces the system transition from stable states to OSC state.
In other words, the lightest species can be seen as an
oscillation catalyst.

5 Summary In this paper, works in clustering, especi-
ally OSC clusterings in the compartmentalized mono- and
bi-disperse granular gases are reviewed. In such systems
spatiotemporal ordered patterns occur due to the intrinsic
dissipation and coupling between the species. A simplified
flux model was used for the system. Two assumptions are
made in this model: (i) the distribution of temperature is
independent of the height z; (ii) the velocity distribution is
Maxwellian and isotropic. Although the temperature can be
considered constant only above a certain height [22], and the
velocity distribution in this driven system is non-Gaussian
[45], this simple flux model seems to have the essentials
capturing the clustering phenomena. We have tested the
accuracy of this model by molecular simulation in a one-
compartment system, and found that the simulated flux
results agree reasonably well with the model. Besides the
HOM, SEG and OSC states, the simulation predicts two new
states, d-OSC and s-HOM clustering states. These two states
are recently confirmed by our experiment and modeling
works. Also bifurcation behaviors between the above states
are studied both theoretically and experimentally.

Being seemingly simple and relatively well-modeled,
such a compartmentalized granular gas system may be
considered as amodel system among others such as chemical
reaction systems, fluid systems, and optical systems, for
understanding the dynamics of nonlinear phenomena in far
from equilibrium systems. Interesting problems such as, to
characterize the system noise, to understand the effect of the
noise on different clustering states, and the different
bifurcations among these states. Primary results obtained
in specifically designed compartments, and in a system with
more than two species or two compartments, indicate that
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
more complicated and interesting phenomena are yet
awaiting further explorations.
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