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Abstract
The motion of a colloid induced by a temperature gradient is simulated by means of
multiparticle collision dynamics, a mesoscale simulation technique. Two algorithms to
quantify the thermophoretic behavior are employed and contrasted. The validity of the
methods is verified as a function of the temperature gradient, system size, and algorithm
parameters. The variation of the solvent–colloid interaction from attractive to purely repulsive
interestingly results in the change of the colloid behavior from thermophobic to thermophilic.

(Some figures may appear in colour only in the online journal)

1. Introduction

The motion of a particle due to the presence of a temperature
gradient is known as thermophoresis, thermodiffusion, or
the Soret effect [1]. Historically this effect has found a
large number of very different applications such as isotope
separation of gases [2], crude oil characterization [3],
or separation of macromolecules in solution [4]. More
recently, the establishment of experimental techniques that
allow temperature control at small scales is originating the
development of microfluidic applications [5, 6].

Thermodiffusion of colloids has been extensively investi-
gated by means of various experimental techniques [7–10],
different analytical approaches [11–15], and recently also
by means of one type of atomistic simulation [16]. Most
colloids in solution show a thermophobic behavior, that
is, they tend to migrate to cold areas, although examples
of thermophilic colloids, which tend to migrate to warm
areas, can also be found [17, 18]. The particularities of
the interactions between the colloid and the surrounding
solvent have been shown to determine their thermophoretic
behavior. Properties such as the colloidal interfacial tension,
solvent polarity, colloidal charge, average temperature, or
particle size, strongly influence the form of the related
thermophoretic forces. Moreover, systems with varying
colloidal concentration have shown that also colloid–colloid
interactions can contribute significantly to the thermodiffusive
properties of the solution [19, 20, 18]. So far no general

theoretical explanation has been found that can predict the
direction or strength of the diffusive migration of the colloids
along the temperature gradient. Simulations with well-defined
interactions and individually tunable parameters are therefore
a promising approach to help in identifying the mechanisms
and driving forces of colloidal thermodiffusion.

In this work we perform simulations with a mesoscale
simulation method known as multiparticle collision dynamics
(MPC) [21], which has been shown to properly include
the effect of hydrodynamic interactions in colloidal and
polymeric systems [22–25], and to be able of sustaining
temperature inhomogeneities [26, 27]. Existing simulations
of colloids in temperature gradients [28, 16] are performed
with molecular dynamics (MD) of both the colloidal and
the solvent particle. Coarse grained methods alternative to
MPC, such as lattice Boltzmann (LB) [29, 30] or dissipative
particle dynamics (DPD) [31, 32], are isothermal in their
most extended implementations, although corresponding
modifications to these models have been proposed in order
to be able to sustain temperature inhomogeneities both for
LB [33, 34] and DPD [35–37]. The rest of the paper is
organized as follows. The simulation model is described
in section 2 and the two methods employed to quantify
the thermal diffusion factor in a dilute colloidal suspension
are described in sections 3 and 4, where the validity of
both methods is investigated and results with repulsive
interactions between the colloid and the surrounding solvent
are shown to be thermophilic. Section 5 presents simulation
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results showing attractive colloid–solvent interactions are
thermophobic, and a heuristic argument to understand this
behavior is discussed. In section 6 we show that the finite-size
effects present in these simulations enhance the value of
the thermal diffusion factor, oppositely to what commonly
occurs when determining transport coefficients in isothermal
simulations.

2. Simulation model

In this work we perform simulations with a hybrid algorithm,
employing the coarse grained solvent provided by the
mesoscale method MPC [21], which is also known in
the literature as stochastic rotation dynamics (SRD) [38,
25]. Colloids are considered by means of MD such that
the effect of varying colloid–solvent interactions can be
straightforwardly investigated. In the absence of temperature
inhomogeneities the method is now well-established [25, 39,
40], and it is very successful in numerous applications of
complex fluids in equilibrium [22, 24] and non-equilibrium
conditions [23, 41–43].

2.1. MPC solvent

The mesoscopic MPC fluid consists of N point particles of
constant mass mi in a box of volume V . The particle state is
described by its position ri and velocity vi (i = 1, . . . ,N),
which can vary continuously in phase space. The dynamics
takes place in two alternating steps. In the streaming step
particles evolve ballistically during a certain time h, the
collision time, ri(t+h)= ri(t)+hvi(t). In the collision step the
simulation box is divided into cubic collision boxes in which
the particles are sorted. All particles j within the collision
box of particle i at a certain time step, interact with each
other through the center-of-mass velocity of the collision box,
vcm,i(t) =

∑i
jmjvj(t)/

∑i
jmj. The actual collision considers a

rotation of the relative velocity to the center-of-mass velocity
by an angle α, around a random orientation,

vi(t + h) = vcm,i(t)+R(α)[vi(t)− vcm,i(t)], (1)

with R(α) the stochastic rotation matrix. This simple collision
rule strictly imposes conservation of mass, linear momentum,
and kinetic energy at the collision box level. This ensures
the presence of hydrodynamic interactions, together with
the sustainability of temperature gradients and thermal
fluctuations. In order to preserve Galilean invariance and
enhance collisional transport, a random shift of the collision
box grid is additionally considered [38]. The reference units
are chosen to be the particle mass m, the collision box size a
and a reference temperature T , which are typically set to one.
This corresponds to a length measure as x̂ = x/a and time
measure as t̂ = t

√
kBT/ma2, with kB the Boltzmann constant.

Kinetic theory calculations [44–46] have very successfully
related the MPC parameters to the corresponding transport
properties of the MPC fluid. These parameters are the
collision time h, the rotation angle α, and the particle density
ρ = N/V . The non-potential interactions between the MPC
particles describe a fluid with the ideal gas equation of state

for all parameters. Nevertheless, the range of parameters with
large values of α and small values of h has been shown to
display a liquid-like behavior characterized by large values of
the Schmidt number Sc = ν/D, with ν the kinematic viscosity
and D the diffusion coefficient [22, 47]. In this work we
use a unique set of parameters to describe the MPC solvent,
h = 0.1, α = 120◦, and ρ = 10, which in three dimensions
corresponds to Sc = 13.

2.2. Temperature gradient establishment

We consider a three dimensional system with periodic
boundary conditions, with a temperature gradient imposed in
one of them. This is obtained by defining a cold layer with
temperature Tc at one extreme of the box, and a hot layer with
temperature Th > Tc at the center of the box. In this way the
simulation box is divided in two half boxes with increasing
temperatures towards the center. The system dimensions
are identified as L⊥ in the two directions perpendicular to
the temperature gradient and 2Lz in the gradient direction.
The temperature at the cold and hot layers is not directly
imposed but is a consequence of an energy flux which is
imposed by the so-called velocity exchange algorithm. The
method was originally introduced in the framework of MD
simulations [48, 49], and consists in identifying the hottest
particle of the cold layer and the coldest particle of the
warm layer, then interchanging their velocities, as a type of
Maxwell’s demon. More details on this and other possible
implementations of the temperature gradient within the MPC
fluid can be found in [26, 27]. After a certain time, the system
in contact with the thermal baths reaches a steady linear
temperature profile

T(z) = Tc +∇Tz, (2)

where∇T = (Th−Tc)/Lz is the resulting temperature gradient
in the z-direction, and Lz is the distance between the two
baths. The equation of state of an MPC fluid is that of
an ideal gas, which determines the density distribution as
ρ(z) = p/kBT(z), with p the system pressure. In the limit
of small temperature differences, the density profile can be
approximated by a linear function decreasing in the direction
of increasing temperature.

2.3. Colloid implementation

In this work, the interaction between the colloid and the
surrounding MPC solvent is performed by means of MD. This
means that the solvent particles in the colloid interaction range
update their positions with the MD integration algorithm,
velocity-Verlet in our case, instead of with the MPC streaming
step, then taking part only in the collision step [50]. The
MD integration time step 1t should be small enough
to integrate the corresponding potential, although there is
no further dependence on it. Typical values are h/1t =
50, 100, 200, depending on the potential. The employed
interaction potential is varied to explore the effect of attractive
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and repulsive interactions, and in both cases we employ a
Lennard-Jones (LJ) type of potential,

U(r) = 4ε
[(σ

r

)2n
−

(σ
r

)n
]
+ C, r < rc, (3)

with r the distance between the solvent particle and the colloid
center. The potential intensity is here always chosen as ε =
kBT̄ = 1, with T̄ the average temperature, and the colloidal
radius is varied from σ = 1 to 4. The repulsive potential
is characterized with the standard values C = ε, n = 6, and
rc = 21/6σ . The attractive potential is defined by C = 0,
and we consider n = 48. The value of the exponent is here
selected especially high in order to limit the range of attraction
and therefore the number of interacting solvent particles. The
cut-off radius is matched at the point where the potential is as
small as the standard LJ n = 6 potential. In this way, we define
Ũ = Un=6(r = 2.5σ), such that rc = [2/(1−

√
1+ Ũ)]1/6σ .

The mass density of the colloid is fixed to be neutrally
buoyant, in other words the same as the mass density of
the solvent. The colloid mass then ranges from mc = 42 for
σ = 1 up to mc = 2680 for σ = 4. Furthermore, it should be
noted that with the actual boundary conditions the main box is
divided into two halves with temperature gradients in opposite
directions. In order to keep this symmetry, each colloid needs
to be accompanied by a twin neighbor in the other half
simulation box, besides all the corresponding periodic images.

3. Single particle thermodiffusion algorithm

The basic phenomenological equation that describes the
thermodiffusion phenomena [51] of a two-component mixture
characterizes the particle flux J of component one in the
direction of a temperature gradient ∇T as

J = −ñDm∇x− ñDTx(1− x)∇T, (4)

where ñ = n + n′ is the averaged total number density, with
n and n′ the densities of the two components, x = n/ñ the
molar fraction of component one, Dm the mutual diffusion
coefficient, and DT the thermal diffusion coefficient. The
so-called Soret coefficient is defined as the ratio of the two
diffusion coefficients

ST ≡
DT

Dm
, (5)

and indicates how strongly the two components separate.
In the stationary state, the particle flux vanishes, and the
Soret coefficient can be obtained from the molar fraction and
temperature distribution

ST = −
1

x(1− x)

∇x

∇T
. (6)

Note that, by convention, a positive ST indicates that for
component one the relative accumulation is higher on the cold
side, while a negative ST will display a reciprocal behavior.
Equation (6) constitutes the standard method to quantify
the thermodiffusion phenomena in concentrated mixtures.
Nevertheless, in the case of dilute solutions the determination
of the density profiles that define the molar fraction gradient
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Figure 1. Thermophoretic force as a time average versus time for a
colloid attached to a spring with repulsive interactions with the
solvent. Colloid diameter d = 6, temperature gradient ∇T = 0.007,
and system size L⊥ = Lz = 42.

are not feasible to compute, such that specific methods need
to be developed.

In a recent study Galliéro and Volz [16] proposed a
method called the single particle thermodiffusion algorithm
(SPTA) to measure the thermal diffusion factor. The idea is
that by attaching the particle to a harmonic spring, there is
no average drift velocity. The thermophoretic force FT then
balances the harmonic force FH, which can be determined as
FT = −FH = k1r, where k is the harmonic constant and 1r
the average deviation of the colloid from its neutral position.
One example of the averaged FT is displayed in figure 1
for a colloid with repulsive interactions with the surrounding
solvent. The instantaneous forces fluctuate strongly, such
that here we display the time integral, with values averaged
over 24 simulations. In the two perpendicular directions to
the temperature gradient the force vanishes, while in the
parallel direction to the gradient the averaged force has a clear
positive value whose long-time behavior we account for as the
computed thermophoretic force FT. The positive value of the
force indicates that the colloid goes on average towards the
hot bath, i.e. it is thermophilic.

The influence of the strength of the spring on the
measured force is analyzed by performing simulations with
different spring constants k. In figure 2, computed values FT
are shown as a function of the inverse k. Within the error of
the measurements, it can be observed that there is no influence
of the spring constant. Moreover, no significant difference is
observed in the case that the colloid is completely fixed (k→
∞). The force in this case is calculated as the average force
exerted on the colloid by all surrounding solvent particles.

The relation of this force to the thermal diffusion factor
can be obtained by taking several standard assumptions. One
is that, in the absence of the spring, the thermophoretic force
FT would balance with the friction force Fζ = −ζvT. Then
the friction coefficient ζ can be understood to be related to the
self-diffusion coefficient by the Einstein relation, Ds = kBTζ .
Lastly, the thermophoretic velocity vT is considered to be
proportional to the thermodiffusion coefficient,

vT = −DT∇T. (7)
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Figure 2. Dependence of the thermophoretic force on the spring
strength. Colloid with solvent repulsive interactions, diameter
d = 4, temperature gradient ∇T = 0.01 and system size
L⊥ = 10,Lz = 30. Solid symbols are simulation results with a
spring of finite spring constant, the empty symbol corresponds to a
fixed colloid, and the dashed line is the averaged value.

This expression will be discussed later. These relations,
together with the definitions of the Soret coefficient in
equation (5) and the dimensionless thermal diffusion factor
αT = T̄ST, lead to

FT = −αT∇kBT. (8)

The same relation can also be exactly obtained through
an alternative route based on the van Kampen mass flux
equation for inhomogeneous systems [52]. The only necessary
additional consideration is that the thermophoretic force
exerted on an MPC solvent particle is exactly vanishing due
to its ideal gas nature [53].

In order to test the validity of the method, we check the
linear relation of the force and the temperature gradient. The
results are shown in figure 3 and prove that the system is
within the linear response regime in all employed temperature
gradients, such that αT in equation (8) is well defined. Note,
however, that much larger temperature differences between
the thermal baths than those shown here might be too
large and also provide strongly non-linear density profiles.
Decreasing the value of the temperature gradient increases
the relative importance of the thermal fluctuations such that
more averaging is necessary to obtain a reasonable value of
the thermophoretic force.

4. Drift velocity measurements

The evaluation of the thermal diffusion factor at dilute
concentrations with more than one colloid can require a
method in which the colloids are freely moving, which
can also help in understanding the eventual effect of the
previously considered spring. When the colloid position is
not averagely fixed, the thermophoretic force translates with
a drift velocity, which balances with a friction force, such that
a vanishing total force is exerted on the colloid. In this case,
the measurement of the average drift velocity of the particle vd

Figure 3. Dependence of the thermophoretic force on the
temperature gradient. Dashed line corresponds to a linear fit.
Colloid with solvent repulsive interactions, diameter d = 4, and
system size L⊥ = 10,Lz = 30.

0.0
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0 50 100
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||
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Figure 4. Average mean displacement of a free colloid as a function
of time. Continuous lines are the average over 2016 simulations.
Dashed line corresponds to a linear fit of the simulation data for
t ≥ 50. Simulation parameters are similar to those in figure 1.

can be approximately related to thermodiffusion coefficient by
equation (7).

We perform simulations by initially releasing one colloid
in each of the two half boxes, equidistant from the cold and
hot thermal baths. The velocity is computed by quantifying
the average particle displacement as a function of time. The
total computed time should then be large enough for the
colloid to have approached the steady state, but short enough
to ensure that it has not reached any of the thermal baths.
This time is therefore much shorter than for the simulations
employing the SPTA, such that the typical number of required
averaging runs is much larger. Figure 4 shows one example
of the averaged mean displacement as a function of time
for a colloid with repulsive interactions between colloid
and solvent and essentially the same parameters as those
shown for figure 1. The mean displacement vanishes in the
two directions perpendicular to the temperature gradient. In
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Table 1. Comparison of results obtained with the SPTA and
thermophoretic velocity measurements, together with the employed
Ds values.

d SPTA→ αT vT → αT 103Ds

2 −5.7 −5.0 14.8
4 −29 −24 6.7
6 −104 −120 3.9
8 −243 −258 2.8

the ∇T-direction, the mean displacement increases, and this
increase is linear for long enough times. The slope of the
linear growth allows us to clearly identify vd.

A series of simulations with both the SPTA and the
thermophoretic velocity method are performed to check the
consistency of these algorithms. The value of the thermal
diffusion factor is obtained directly from the thermophoretic
force with equation (8). Meanwhile, the measurements of the
thermophoretic velocity are related to αT with equations (5)
and (7) as

αT ' −
T̄

Ds

vT

∇T
. (9)

In the considered case of a very dilute colloidal suspension,
the mutual diffusion coincides with the colloid self-diffusion
coefficient, which needs to be further quantified. The
employed values of Ds are obtained by determining
the averaged mean squared displacement in additional
equilibrium simulations. A summary of the quantified values
is presented in table 1. The results show a good agreement
between both methods within the precision of the simulations.
This agreement verifies the viability of both algorithms within
the validity restrictions of the performed approximations, as
above discussed.

Galliéro and Volz [16] perform MD simulations with
colloidal suspensions at varying concentrations and evaluate
the Soret coefficient ST with the standard method in
equation (6). The extrapolation of their data to the infinitely
dilute case agrees well with the value obtained with the SPTA,
apart from a small underestimation whose origin is discussed
in [53]. Although we have not performed a similar study with
either of the two algorithms presented here, it is reasonable to
accept the results in [16] as a validation for the method.

The thermal diffusion factor αT calculation presented in
this section relies on the definition of the thermophoretic
velocity in equation (7). This equation has been shown from
two different approaches [54, 55] to be just an approximation
of the more precise expression,

vd = −DT∇T − DsβT∇T +∇Ds, (10)

where βT is the thermal expansion coefficient. The two
additional terms can be neglected in the cases where |DT| �

|dDs/dT − Dsβ|, which is indeed the case in most complex
fluids [5, 56, 57]. We quantify here the validity of this
approximation through the related equation of the thermal
diffusion factor obtained with equation (5),

αT = −
T̄

Ds

vd

∇T
− T̄βT +

T̄

Ds

∂Ds

∂T
. (11)

Figure 5. Colloid self-diffusion coefficient Ds from equilibrium
simulations at various temperatures. Colloid diameter d = 4.

The first term corresponds to the quantity already evaluated in
the third column of table 1. The second term is exactly equal
to one, since the thermal expansion coefficient for the MPC
solvent is known to be βT = 1/T̄ . The last term can obtained
from equilibrium simulations of Ds at different temperatures,
as shown in figure 5. These results quantify that ∂Ds/∂T =
0.0059 for a colloid with diameter d = 4, and Ds = 0.0067
for T = 1. This means that the contribution of the two last
terms can be calculated to be approximately 0.5% of the first
one, which is in fact smaller than the error of our simulations.

A different aspect which is important to take into account
is that the thermophoretic force on the colloids translates
into the presence of a thermophoretic flow field opposite to
it [58–60]. For the case of a fixed colloid, this flow decays as
r−1, the inverse distance, similar to the standard propagation
of hydrodynamic interactions. Meanwhile, in the case of the
moving colloid, this flow will decay as r−3; therefore much
faster.

In order to give a comparative statement for the choice
of one of these methods in future applications, we should
point out that from the computational cost point of view
both methods are similar in principle. The differences arise
from two aspects. One is that the data is easier to analyze
in the SPTA since the force on the colloid is constant
after equilibration, whereas the drift is only constant after
the Brownian time scale, and before the colloid feels the
effect of the boundaries, which translates as an additional
effort. Another aspect is that the SPTA directly evaluates the
thermophoretic force FT, and thus the thermal diffusion factor
αT, while the evaluation of the drift velocity results in a good
approximation of the thermodiffusion coefficient DT. This
may result in the convenience of one of the methods, since
the additional determination of the self-diffusion coefficient
could be avoided in some cases.

5. Attractive colloid–solvent interactions

In the previous sections we have presented results with
repulsive interactions between the colloid and the surrounding
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Figure 6. Thermophoretic force as a time average versus time for a
colloid attached to a spring with attractive interactions with the
solvent. Colloid diameter d = 6, and system size L⊥ = Lz = 42.

Table 2. Summary of result obtained with the SPTA with attractive
colloid–solvent interactions.

d SPTA→ αT

2 7.0
4 65
6 197
8 440

solvent, which have been shown to translate into a
thermophilic behavior. Here we discuss the effect of attractive
interactions, which have been implemented by employing a
LJ type potential as stated in equation (3). The preliminary
obtained results display negative thermophoretic forces, as
can be seen in figure 6 and in table 2. This indicates that
the colloid goes on average to the cold areas, in other words
it becomes thermophobic. Previous simulations [16] with a
purely MD model with attractive interactions have reported
only such thermophobic behavior.

Experimentally, a similar influence of the attraction
interaction between solute and solvent on the thermodiffusive
properties has been observed in polymeric systems with
different solvents [61–64]. Although polymers are mostly
thermophobic [65, 57], in cases where the affinity between
solute and solvent is higher the Soret coefficients are found
to be larger, while in cases where the affinity is reduced, for
example by diminishing the relevance of the hydrogen bonds
in water-based solutions, the Soret coefficient can become
eventually negative [61].

An intuitive picture to understand the behavior obtained
in our simulation results can be drawn as follows. In general
situations, and very especially in MPC, the solvent density
in the warm region is smaller than that in the cold region,
as illustrated in figure 7. The larger number of particles on
the low-temperature side of the particle may then produce
stronger interactions than on the warm side. Therefore,
the repulsive colloid–solvent interactions push the colloid
towards high temperatures, while attractive colloid–solvent
interactions pull the colloid to low temperatures. This simple

T(z)

(z)ρ
s

Figure 7. Schematic of a colloid with its surrounding MPC solvent
density in the presence of a temperature gradient.

intuitive picture is, however, not generally valid since it
ignores the strength of the collisions at different temperatures.
A more in-depth study will be presented elsewhere.

The thermal diffusion factor αT in tables 1 and 2 clearly
increases with the particle size. Although it is not the main
goal of this work to investigate this dependence, from our
data a cubic dependence can be inferred for both attractive and
repulsive interactions. This is in contrast to experimental and
analytical results [8–10] in which this dependence is debated
to be between quadratic and linear. Preliminary results [26]
indicate that the cubic dependence is due to the nature of the
Lennard-Jones interaction employed in this work, such that
a different colloid–solvent interaction will noticeably vary in
its dependence, as we will discuss in detail in a forthcoming
publication.

6. Finite system size effects

The finiteness of the simulation box has two principal
effects on the transport properties of the equilibrium
systems [66–68]. In an infinite system, perturbations of
arbitrary wavelengths can propagate, while, in a finite system,
the maximum wavelengths are determined by the system
size kmax = 2π/L. This truncation of the propagation spectra
results in a faster decay of the correlation functions and
consequently in a slow down of the transport properties.
Faster decay of the correlation functions dependent on the
system size has been observed in various systems [69,
47, 70–72]. Diffusion of polymers constitute a reference
example of this effect [73, 24], where a box-size-dependent
hydrodynamic radius emerges to describe the effective
polymer center-of-mass diffusion coefficient. When periodic
boundary conditions are employed, each particle in the
system interacts with an infinite number of periodic images.
This effect translates in an increase of the auto-correlation
functions, then having an opposite effect to the spectra
truncation. Nevertheless, the contribution of the periodic
images appears at later times, having a negligible effect in
comparison with the spectra truncation. The general trend is
then that the related transport coefficients increase with the
box size. To avoid the effect of the periodic images, systems
can be considered to be placed between walls, although in that
case the effects due to confinement can become much more
relevant.

In order to investigate finite-size effects in our
simulations with temperature gradients, we compute the
thermal diffusion factor αT for a fixed particle diameter (d =

6
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Figure 8. Normalized thermal diffusion coefficient versus the ratio
of particle diameter over system size. The simulations have been
performed with the SPTA with colloid diameter d = 6, and
repulsive colloid–solvent interaction. Symbols correspond to
simulation computed values, and the dashed line is the linear
extrapolation of equation (12), with α∞T = −75 and λ = 2.2.

6), varying the simulation box size with the SPTA method.
The employed box is a double cube with L⊥ = Lz. Figure 8
shows a normalized thermal diffusion factor as a function of
the inverse system size in units of the colloid diameter d/Lz,
which can be approximated by the following linear behavior

αT = α
∞

T

(
1+ λ

d

Lz

)
. (12)

Here α∞T is the value of the thermal diffusion factor
extrapolated to an infinitely large system and λ is the scaling
factor. The value of α∞T defines the thermodiffusion of the
system such that it then depends on system properties such as
the colloid size, strength and type of interaction, or average
temperature. The scaling factor does not necessary depend on
the same properties, since it accounts for the finite-size effect,
although more detailed simulations are still required to verify
this statement.

Apart from the strong finite-size dependence, the most
remarkable characteristic of the results shown in figure 8
is that the absolute value of the thermal diffusion factor
decreases with the box size. This is in contrast to other
quantities, such as the center-of-mass diffusion of a polymer
in an equilibrium state, which increases with the box size [73,
24]. Besides the effects discussed above, one needs to consider
that with the actual implementation of the temperature
gradient it implies that each colloid is accompanied by a twin
neighbor in the other half simulation box with thermophoretic
forces opposite to each other. More importantly, each of these
colloids is accompanied by the corresponding thermophoretic
fluid flow, which has opposite direction to the thermophoretic
force. It is then reasonable to assume that the presence of
the twin colloids and their generated flow fields enhance the
value of the thermal diffusion factor, an effect that decreases
with increasing system size. This would explain an overall
decrease of the thermal diffusion factor with the box size, in
agreement with the results shown in figure 8. The values of αT

presented in tables 1 and 2 for different colloidal diameters
are performed keeping the ratio d/Lz constant, in particular
the box size is varied to be Lz = 6d.

In the case of the moving particle, the thermophoretic
flow decays much faster than for the SPTA and then the
finite-size effects in determining DT are expected to be much
smaller. For the results presented in table 1 it should, however,
be considered that the determination of Ds is also required.
The self-diffusion coefficient is also known to be importantly
affected by finite-size effects, which linearly increase its value
with system size [25]. Since αT depends on the inverse of Ds, a
similar decrease with system size as for the SPTA is expected.
This argument is supported also by the nice agreement
between both methods in table 1, where the finite-size effects
should be comparable since the employed system sizes are the
same in both cases.

7. Conclusions

Simulations of colloidal solutions in the dilute regime
are performed with a hybrid mesoscopic model, as an
alternative to the existing MD simulations. The thermal
diffusion factor is quantified using two different algorithms.
One consists in attaching the colloid to a harmonic spring
and then quantifying the average spring deformation, and
the other consists in computing the average drift velocity
of a free colloid. The consistency shown by each of
the algorithms, together with the satisfactory agreement
between them, confirms these two methods as a reliable
way of obtaining the thermal diffusion properties in the
dilute regime. These methods can, and have already
been, experimentally employed, using laser tweezers to
determine the thermophoretic force [74] or by following the
colloids trajectories with an appropriate microscopy [5]. We
investigate the finite-size effects present in our simulations,
which are shown to enhance the value of the thermal
diffusion factor, in contrast to the common behavior in
isothermal simulations. We argue that the main difference
stems from the particular periodic boundary conditions
in the presence of a temperature gradient, where the
simulation box is divided into two halves with temperature
gradients of opposite slopes, each colloid is accompanied
by a twin neighbor, both undergoing thermophoretic forces
and fluid flows in opposite directions. Simulation results
of colloids with a purely repulsive interaction with the
surrounding solvent are shown to be thermophilic, while
colloids with attractive colloid–solvent interactions are shown
to be thermophobic. This behavior can be compared with
experimental observations and are explained from an heuristic
argument. Furthermore, the different thermal affinities shown
by our model can be exploited to build thermophoretic
microswimmers with pulling or pushing behavior, as shown
in [75, 76], which will contribute in the development of
synthetic nanomachines.

Acknowledgments

The authors are grateful for valuable discussions with Simone
Wiegand, Ulf D Schiller, and Gerhard Gompper.

7



J. Phys.: Condens. Matter 24 (2012) 284132 D Lüsebrink et al
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[26] Lüsebrink D 2011 Colloidal suspensions in temperature

gradients with mesoscopic simulations PhD Thesis
Cologne University, Germany
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[65] Rauch J and Köhler W 2005 Macromolecules 38 3571–3
[66] Ladd A J C 1990 J. Chem. Phys. 93 3484
[67] Dünweg B and Kremer K 1991 Phys. Rev. Lett. 66 2996
[68] Pierleoni C and Ryckaert J 1992 J. Chem. Phys. 96 8539
[69] Ripoll M and Ernst M H 2005 Phys. Rev. E 72 011101
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