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Oscillatory phenomena of compartmentalized bidisperse granular gases are studied through experi-

ments, molecular dynamics simulations, and a flux model [Mikkelsen et al., Phys. Rev. E 70, 061307

(2004)]. The degenerate oscillatory state (d-OSC), which has been predicted in our previous simulations

[Liu et al., Phys. Rev. E 79, 052301 (2009)], is experimentally observed and well described by the flux

model. From the d-OSC state, the system takes a transition to a complete oscillatory state (OSC) through

a homoclinic gluing bifurcation. Around the bifurcation point, noise-induced periodic irregularity is

observed, and it can be perfectly reproduced by simulations and the flux model with additional random

flux terms. The numerical results show a low-frequency divergence characteristic of the irregular

oscillation, which is clearly caused by noise-induced hopping between OSC and d-OSC states.
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In some dynamical systems, two or more attractors may
simultaneously coexist and can be merged through a gluing
bifurcation. The dynamics of such systems may be domi-
nated by noise. In particular, hopping can occur between
attractors when the noise amplitude is comparable to the
distance between attractors. Gluing bifurcations have been
observed with interesting dynamical behaviors in many
physical systems, such as electronic circuits [1], nonlinear
optics [2], and fluid or liquid-crystal flows [3–7], etc.,
while hopping effects between attractors have been found
in systems with large fluctuations, which induce 1=f-type
low-frequency divergent stochastic behaviors [8,9].

Recently, granular gases in compartmentalized systems
have been found to exhibit rich nonequilibrium dynamical
behaviors, including granular Maxwell’s demon [10–13]
and its extensions [14–19] in monodisperse systems, com-
petitive asymmetric clustering (ASC) [20,21] and oscilla-
tions (OSC) [22–26] in bidisperse systems, etc. In one of
our latest papers [27], we predicted a degenerate oscillation
(d-OSC) in the compartmentalized bidisperse granular gas.
In a d-OSC state, the oscillatory behavior of the larger
particles in the gas is suppressed due to dissipation, and
the phase trajectory of the whole system consists of two
symmetry-degenerate limit cycles. There is a transition
from a d-OSC to an OSC state, and we propose that it is
triggered by a homoclinic gluing bifurcation. During the
gluing process, apparent hopping effect is expected, due to
the extreme intrinsic noise of the dilute granular system.

In this Letter, we show the first experimental observation
of the d-OSC state and the gluing bifurcation in compart-
mentalized bidisperse granular gases. Based on Mikkelsen
et al.’s flux model (FM) [20,21], a theoretical description
for the related dynamical behaviors is given. A complete
phase diagram is mapped out from experimental data and
theoretical calculations, which complements our previous

simulation results [27]. The gluing process is further
studied through numerical simulation and theoretical mod-
eling. For the first time, the effects of noise are considered
for the bidisperse system, and a hopping phenomenon is
observed in either an OSC or a d-OSC state near the gluing
point, which is seldom reported in two-dimensional
systems.
In our experiments, a setup with two compartments

connected by a rectangular window in the middle wall is
used. The two compartments are identical, each with a
ground area � ¼ 26� 26 mm2. The connecting window,
with width W ¼ 20 mm and height H ¼ 30 mm, is hori-
zontally centered, and its lower edge is h ¼ 15 mm above
the bottom plate of the container. The whole container is
fixed on an electromechanical shaker which moves in a
sinusoidal manner with shaking frequency f ¼ 60 Hz and
adjustable amplitude A. Two kinds of particles, glass beads
with radius r1 ¼ 0:5 mm and steel beads with r2 ¼
0:75 mm (subscript 1 for glass and 2 for steel here and
below) are used to compose a bidisperse granular gas. The
mass ratio of the two species, m1=m2, is about 1=9. The
population of species i in the compartment � is denoted
as Ni� [i ¼ 1, 2 for the two species; � ¼ l, r for the left
compartment (LC) or the right one (RC)]. The total number
of beads is fixed to be N ¼ 1000, and the number fraction
�i ¼ Ni=N is varied, where Ni is the number of beads
for species i. The intensity of the vibration is characterized
by the dimensionless peak velocity of the vibrating plate
vb ¼ 2�Af=

ffiffiffiffiffiffiffiffiffiffi
4gr1

p
.

As we have predicted in previous simulations [27], five
basic states of the system are experimentally observed with
different vb and �2, including the trivial homogeneous
state (HOM) at large vb, the ASC state at small vb, the
OSC and d-OSC states at relatively small �2 (�2 < 0:5 in
this system) and intermediate vb, and the s-HOM state
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[smaller (lighter) glass beads are nearly homogeneously
distributed, and larger (heavier) steel beads are asymmet-
rically clustered], which is a concomitant clustering state
of the d-OSC state and cannot be distinguished from the
ASC state at large �2. The corresponding phase diagram
is shown with symbols in Fig. 1. To focus on the structure
around the oscillatory regimes, data for very large vb and
�2 are not plotted.

Snapshots of anOSC state atvb¼1:04 and ad-OSC state
at vb¼1:23 for �2¼0:35 are shown in Fig. 2. In the con-
ventional single-limit-cycle OSC state [Figs. 2(a)–2(d)],
two kinds of particles fully participate the oscillation, and
they both get clustered alternatively in the two compart-
ments. In the d-OSC state [Figs. 2(e)–2(h)], most steel
beads always stay in one compartment; only a very small

number of them can be exchanged between the two com-
partments and oscillate with most glass beads. Thus sym-
metric double-limit cycles are observed for the d-OSC state
in the phase plane spanned by N1� and N2�.
We have demonstrated that the OSC state can be well

described by FM in a previous study [27]. The d-OSC state
can also be understood by the same model. By adopting all
the assumptions and deductions in Refs. [20,21], a flux
function, which measures the outflow flux of species i from
one compartment � to the other, is given as

FiðN1�; N2�Þ / Ni��i�e
�gh=�2

i�ð1� e�gH=�2i�Þ; (1)

where �i� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�=mi

p
with Boltzmann’s constant kB ¼ 1.

The common granular temperature T� for both species in
compartment � is determined by the energy balance be-
tween dissipation and injection. The dissipation caused by

particle-particle collisions is in the form of Q�
pp / T1=2

� .

Assuming a sawtooth motion of the bottom, the energy
input rate J does not depend on the granular temperature
T� explicitly. Mikkelsen et al. did not consider the dis-
sipation of particle-wall (pw) collisions; however, we
could obtain a better agreement (which will be explained
later) with our experiments if it is considered. For simplic-
ity, we suppose that both species have the same coefficient
of restitution � in either a particle-particle collision or a
pw collision. FollowingMikkelsen et al.’s formulation, it is
easy to show that the dissipation of the pw collision in-

volving the surrounding walls is Q�
pw / T3=2

� , and that with

the bottom plate will result in a negative term proportional

to T1=2
� in J, which decreases the energy input efficiency

[28]. Thus, a cubic equation in the form of AT3=2
� þ

BT1=2
� þ C ¼ 0, where A, B, and C are functions of Ni�

and m�, is finally obtained for T
1=2
� with the assumption of

a balance between dissipation and injection. An analytical
solution for this equation exists, and the flux function in
Eq. (1) can be calculated.
The dynamical behaviors of the whole system could be

simply described by the following equations:

dNil

dt
¼ �dNir

dt
¼ �FiðN1l; N2lÞ þ FiðN1r; N2rÞ: (2)

By using the explicit fourth-order Runge-Kutta method,
these equations are numerically solved, and all five states
are obtained, with the phase diagram shown by solid lines
in Fig. 1. Compared with the experimental results, the
theory describes the system well with the above settings,
ignoring some mismatch in vb. If the dissipation in pw
collisions is not considered, the domains of OSC and
d-OSC states will be rather narrow, though no qualitative
change will be introduced in the phase diagram.
In Fig. 3, we show the phase orbits of OSC and d-OSC

states obtained by numerical solution of the model,
single-limit cycle, and symmetric double cycles are ob-
tained, respectively. The transition from d-OSC to OSC

FIG. 1 (color online). Phase diagram in the �2-vb plane:
symbols for experimental results and plates separated by solid
lines for calculations through FM without noise terms. Irregular
oscillations are experimentally observed in the gray polygon.

FIG. 2. Experimental snapshots for �2 ¼ 0:35, the OSC state
observed at vb ¼ 1:04 [(a–d)], and the d-OSC state at vb ¼ 1:23
[(e–h)]: (a) and (e) Both species are mostly clustered in LC;
(b) and (f) glass beads are driven to RC; (c) and (g) steel beads
start to follow the glass beads to move to RC; (d) and (h) most
glass beads return to LC; the next state would be similar to (a)
and (e) if steel beads return to LC. Glass beads are in light color,
and steel ones in dark.
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(decreasing vb) is through a homoclinic gluing bifurcation,
in which the double cycles are opened by the unstable
domain of the saddle center and get joined in the periphery.
The nullcline of the net flux (dNi�=dt) of glass beads takes
some topology-invariant rearrangement at the contact point
(as shown in the dashed circle), while that of the steel beads
does not change much. One saddle center and two unstable
foci exist (gray dots in the figure) in this d-OSC and OSC
states, which differs from the OSC cycle with only one
unstable focus that we have previously studied [27]. By
decreasing vb to values far away from the gluing point, the
three unstable fixed points here will be merged into one
unstable focus via a symmetric saddle-node (unstable) like
bifurcation, and the previously reported OSC state can be
reached.

An irregular oscillation (i-OSC), which behaves like a
randommixture of d-OSC and OSC states, is also observed
around the boundary of the two states (gray polygon shown
in the phase diagram in Fig. 1), and this phenomenon
cannot be explained by the current theory. The period (or
recurrence time) � of the oscillatory states is measured in
our experiments by observing the recurrence of density
patterns in the two compartments with the aid of high
speed imaging and autodetection programs. As shown in
Fig. 4, when vb is either small or large, i.e., the system is in
a pure state of either OSC or d-OSC, the recurrence time is
well single-valued. The period � of a pure OSC state at

small vb obeys �� ðvb � vicÞ�1=2 (red line in the figure),
corresponding to an infinite-period bifurcation from OSC
to ASC with critical shaking velocity vic, while � of a pure
d-OSC state at large vb is about Oð1Þ, corresponding to a
supercritical Hopf bifurcation from s-HOM to d-OSC.
In the intermediate regime (1:08< vb < 1:20), the recur-
rence time is somewhat irregular, and the recurrent phe-
nomena are found to be sometimes in an OSC orbit and
sometimes in a d-OSC one. The recurrence time data
measured are classified according to the two behaviors,
and two statistical values are finally obtained and shown in
the figure. This hopping behavior can happen only near the
gluing point when the two limit cycles of the d-OSC state

are close enough or two points in the single-limit cycle of
OSC are near enough so that noise can activate hopping.
Thus it is a sign of the gluing process from a d-OSC to OSC
state. However, in the above theory without any considera-
tion of noise, a divergence in the recurrence time, instead
of irregularity, is obtained (as shown in the inset, where the
red lines are logarithmic fits to show the divergence),
which is typical for a homoclinic bifurcation.

0

FIG. 4 (color online). Recurrence time for the oscillatory
states obtained in experiments. The inset shows the theoretical
prediction near the gluing point (vb matched according to
Fig. 1).

FIG. 3. For �2 ¼ 0:35, phase trajectories of the d-OSC state
with symmetric double cycles at vb ¼ 0:651 (a) and OSC state
with a single cycle vb ¼ 0:649 (b) near the gluing point are
plotted by solid curves, hollow symbols (circles for dN1r=dt,
triangles for dN2r=dt) show the nullclines of the net flux of both
species, and arrows represent the whole flow diagram.

FIG. 5 (color online). Time evolution of populations for the
right compartment (left panel: black solid lines for N1r=N1 and
red dashed lines for N2r=N2) and phase trajectories (middle
panel) given by MD simulation at �2 ¼ 0:275, and vb ¼
0:545 (a), 0.535 (b), 0.525 (c), 0.520 (d), and 0.510 (e). The
theoretical correspondences obtained from Eq. (2) with noise
terms in Eq. (3) are shown in the right panel, with the confining
parameters K2

1 ¼ 3 and K2
2 ¼ 1.
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It is beyond our devices’ ability to do detailed measure-
ments around the gluing point. We implement the molecu-
lar dynamics simulation (MD) to study the gluing process.
A standard hard-sphere event-driven algorithm [29,30] is
used to simulate a system with the same geometric pa-
rameters as those in the experiments. Meanwhile, noisy
flux terms �i� are introduced into the right-hand side of
Eq. (2), by simply assuming that the flux fluctuation of
either species is independent from the other. Thus the
Gaussian fluctuation form suggested by Eggers [11] for
monodisperse systems can be used, with the correlation
functions as follows:

h�i�ðtÞ�j�ðt0Þi ¼ �2ðNi�Þ	ij	��	ðt� t0Þ; (3)

where �2ðNi�Þ ¼ K2
i ½FðNi�Þ þ FðNi � Ni�Þ� and K2

i is a
system parameter that confines the noise amplitude [31].
The values of K2

i only determine how close to the gluing
point that one can observe the hopping effect. In our
simulations, K2

1 � 3 and K2
2 � 1 are measured near the

gluing point.
The results fromMD simulation and FM theory in Fig. 5

show clearly how the noise affects the gluing process.
When vb is properly large, the system, represented by
fN1�; N2�g, stays in one of the symmetric double-limit
cycles of the d-OSC state. As vb decreases and approaches
the critical value, the system can jump over to the other
limit cycle, and two sequential jumps will lead to an OSC-
like behavior. In the immediate vicinity of the gluing point,
it is impossible to distinguish d-OSC and OSC states from
each other. By further decreasing vb, the system becomes
mainly OSC-like, but two sequential jumps between the
nearest points may result in a d-OSC like behavior. Finally,
only the OSC state is possible when vb is small enough.

The FM theory with flux fluctuation exhibits qualitatively
the same behaviors, which are shown in the right panel
of Fig. 5.
The data sequences for both d-OSC and OSC states

show strong periodicity, with sharp peaks in their power
spectrums, as shown in Fig. 6. However, the power spec-
trum for the transient i-OSC state almost exhibits no
obvious periodicity; instead, a 1=f-type low-frequency
divergence is observed, which is characteristic of such
hopping phenomena.
In conclusion, we have observed a homoclinic gluing

bifurcation in a granular system for the first time, which
enriches the nonequilibrium dynamics of the system and
may make it to be a model system for nonlinear dynamics.
We have also found that noise plays an important role in
the system, which induces a striking hopping effect and
leads to a low-frequency divergent i-OSC state around the
gluing point. We will check the possibility to chaos if the
system is extended to higher dimensions with more species
or more compartments in further studies.
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