
Soft Matter

PAPER

Pu
bl

is
he

d 
on

 1
9 

Ju
ne

 2
01

4.
 D

ow
nl

oa
de

d 
by

 I
ns

tit
ut

e 
of

 P
hy

si
cs

, C
A

S 
on

 0
5/

04
/2

01
5 

07
:0

8:
17

. 

View Article Online
View Journal  | View Issue
Hydrodynamic si
aTheoretical So-Matter and Biophysi

Forschungszentrum Jülich, 52425 Jülich,
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mulations of self-phoretic
microswimmers

Mingcheng Yang,*ab Adam Wysockia and Marisol Ripolla

A mesoscopic hydrodynamic model to simulate synthetic self-propelled Janus particles which is

thermophoretically or diffusiophoretically driven is here developed. We first propose a model for a

passive colloidal sphere which reproduces the correct rotational dynamics together with strong phoretic

effect. This colloid solution model employs a multiparticle collision dynamics description of the solvent,

and combines stick boundary conditions with colloid–solvent potential interactions. Asymmetric and

specific colloidal surface is introduced to produce the properties of self-phoretic Janus particles. A

comparative study of Janus and microdimer phoretic swimmers is performed in terms of their swimming

velocities and induced flow behavior. Self-phoretic microdimers display long range hydrodynamic

interactions with a decay of 1/r2, which is similar to the decay of gradient fields generated by self-

phoretic particle, and can be characterized as pullers or pushers. In contrast, Janus particles are

characterized by short range hydrodynamic interactions with a decay of 1/r3 and behave as neutral

swimmers.
I. Introduction

Synthetic microswimmers have recently stimulated consider-
able research interest from experimental1–6 and theoretical
viewpoints.7–9 This is due to their potential practical applica-
tions in lab-on-a-chip devices or drug delivery, and fundamental
theoretical signicance in non-equilibrium statistical physics
and transport processes. Self-phoretic effects have shown to be
an effective and promising strategy to design such articial
microswimmers,3–5,7,10–12 where the microswimmers are driven
by gradient elds locally produced by swimmers themselves in
the surrounding solvent. In particular, the collective behavior of
a suspension of self-diffusiophoretic swimmers has recently
been studied in experiments.13–16

Phoresis refers to the directed dri motion that suspended
particles experience in the presence of a gradient eld.10

Important examples are thermophoresis (induced by gradients
of temperature), diffusiophoresis (gradients of concentration),
or electrophoresis (gradients in the electric potential). Self-
phoretic swimmers are typically composed of two parts: a
functional part which modies the surrounding solvent prop-
erties creating a local gradient eld, and a non-functional part
which is exposed then to the local gradient eld. Most existing
experimental investigations of the self-phoretic microswimmers
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consider Janus particles, which can be quite easily synthesized
using partial metal coating on colloidal spheres.3,5 In dif-
fusiophoretic microswimmers, the metal coated part catalyzes a
chemical reaction to induce a local concentration gradient. In
thermophoretic microswimmers, the metal coated part is able
to effectively absorb heat from e.g. an external laser, which
creates a local temperature gradient. The investigations per-
formed by computer simulations have mostly considered dimer
structures composed of two connected beads instead of Janus
particles.17–20 This is motivated by the simplicity of the structure
which can be approached by a two beads model. Janus particles
have been recently simulated by employing a many beads
model,21,22 which has provided an interesting but computa-
tionally costly approach. The fundamental differences on the
hydrodynamic behavior of Janus and dimer swimmers, as well
as the interest in the investigation of collective phenomena of
these systems strongly motivates the development of simple
and effective models to simulate the self-phoretic Janus
particles.

A single-bead model of the self-phoretic Janus particle in
solution is here proposed, together with a detailed comparative
study of the hydrodynamic properties of dilute solutions of a
self-phoretic Janus particle and a self-phoretic microdimer.
While the solvent is explicitly described by a mesoscopic
approach known asmultiparticle collision dynamics (MPC), it is
necessary to develop a description of a colloidal particle able to
produce strong phoretic effect, and reproduce the correct rota-
tional dynamics. The proposed colloid model combines into a
single bead, potential interactions with the solvent and stick
hydrodynamic boundary conditions. The properties of
This journal is © The Royal Society of Chemistry 2014
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self-phoretic Janus particles are introduced then with asym-
metric and specic particle surface. The validity of the model is
shown by implementing the simulations of both the self-dif-
fusiophoretic and self-thermophoretic microswimmers. The
ow eld induced by the self-phoretic Janus particle is
measured and compared with that around the self-phoretic
dimer and their analytical predictions. The efficiency of the
model and the consistency of the results puts this method
forward as a reliable and powerful tool to investigate the
collective behavior of self-phoretic microswimmers.
Fig. 1 Schematic diagram of the three regions of the interactions as a
function of r the distance between the solvent particle and the colloid
center. The inset is a sketch of a Janus particle.
II. Simulation of a Janus
microswimmer in solution

The typical sizes and time scales of a Janus colloidal particle
and the surrounding solvent particles are separated by several
orders of magnitude which are impossible to cover with a
microscopic description. Over the last decades various meso-
scopic simulation methods have been developed to bridge such
an enormous gap. Here, we employ an especially convenient
hybrid scheme that describes the solvent by MPC which is a
coarse-grained particle-based method,23–28 while the interac-
tions of the Janus particle with the solvent are simulated by
standard molecular dynamics (MD).

MPC consists of alternating streaming and collision steps. In
the streaming step, the solvent particles of mass m move
ballistically for a time h. In the collision step, particles are
sorted into a cubic lattice with cells of size a, and their velocities
relative to the center-of-mass velocity of each cell are rotated
around a random axis by an angle a. In each collision, mass,
momentum, and energy are locally conserved. This allows the
algorithm to properly capture hydrodynamic interactions,
thermal uctuations, to account for heat transport and to
maintain temperature inhomogeneities.29,30 Simulation units
are chosen to be m ¼ 1, a ¼ 1 and kB�T ¼ 1, where kB is the
Boltzmann constant and �T the average system temperature.
Time and velocity are consequently scaled with (ma2/kB�T)

1/2 and
(kB�T/m)1/2 respectively. The solvent transport properties are
determined by the MPC parameters.31,32 Here, we employ the
standard MPC parameters a ¼ 120�, h ¼ 0.1, and the mean
number of solvent particles per cell r ¼ 10, which corresponds
to a solvent with a Schmidt number Sc ¼ 13. The simulation
system is a cubic box of size L ¼ 30a with periodic boundary
conditions.

By construction, a Janus particle has a well-dened orienta-
tion with a corresponding well-dened rotation, and surface
properties are different in the two colloid hemispheres. In
previous studies of colloid phoresis with MPC,18,19,33–35 a central
type of interaction such as the Lennard Jones potential has been
employed, which does not result in a rotational motion. A
previous study of rotational colloidal dynamics36 has already
employed MPC with stick boundary conditions. This was per-
formed by drawing the relative post-collisional solvent velocity
from a Maxwell–Boltzmann distribution with the temperature
as a control parameter. This means that the solvent was effec-
tively thermalized at the whole colloid surface, which articially
This journal is © The Royal Society of Chemistry 2014
perturbs the temperature and concentration elds. In order to
properly consider the effect of temperature and concentration
non-homogeneous elds, the development of an alternative
approach is necessary. In this work, we rst modify existing
techniques to construct a specic model which allows us to
simulate a colloid with stick boundary conditions together with
potential interactions with the solvent. These boundary condi-
tions locally conserve not only mass and momentum, but also
energy. Then, in order to reproduce the properties of a Janus
particle, the spherical colloid is divided in two hemispheres
characterized by different interactions with the surrounding
solvent. One of these hemispheres (with a polar angle q # p/2
with respect to a dened colloid axis n) is considered to be the
functional part, while the other one is the non-functional part.
The functional part of the Janus particle is where the material
has special properties like enabling a chemical reaction (cata-
lytic) or carrying a high temperature due to a larger heat
adsorption. The special behavior of the functional part origi-
nates local gradients (as of concentration or temperature) which
will induce a phoretic force applied to the Janus colloid. In the
following sections we introduce rst the model for a colloid
with stick boundary conditions and a well-dened orientation,
and then consecutively the thermophoretic and diffusiopho-
retic Janus particles.
A. Passive colloid with stick boundary: simulation model

A colloidal particle with stick boundary conditions will rotate
randomly. This is caused by the stochastic torque exerted on the
particle due to collisions with the solvent. On a coarse grained
level, stick boundary conditions can be modeled by the bounce
back (BB) collision rule,37,38 this is by reversing the direction of
motion of the solvent particle with respect to the colloidal
surface. However, the bounce back rule does not induce
signicant phoretic effects, such that it is necessary to combine
it with a so potential. Practically, we realize this by dening
three interaction regions, as shown in Fig. 1. For solvent parti-
cles at distances to the center of a colloid, r, larger than the
cutoff radius, r > rc, there is no interaction. For rb > r > rc just the
so central potential is considered. And for r < rb, both the so
Soft Matter, 2014, 10, 6208–6218 | 6209
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Fig. 2 Time auto-correlation function of the orientation vector of
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potential and the bounce back collision are taken into account.
The value of the bounce-back radius rb should be large enough to
ensure that a certain amount of solvent particles participate in
the bounce-back collision such that a signicant rotational
friction is induced. On the other hand, the value of rb should
also be small enough such that the colloid–solvent potential
effectively contribute to the phoretic force.

The interaction potential employed in this work is of
Lennard-Jones (LJ) type,39 with the general form

UðrÞ ¼ 43

"�
s

r

�2k

�
�
s

r

�k
#
þ C; r# rc: (1)

The positive integer k controls the stiffness of the potential,
and rc is the potential cutoff radius. The potential intensity is
chosen as one of the system units 3 ¼ kB�T ¼ 1, and the inter-
action length parameter as s¼ 2.5a. In this work we choose rb¼
s which is also a good estimation for the colloid radius.
Attractive interactions are obtained with C ¼ 0, and rc ¼ 2.5s
and repulsive with C¼ 3 and rc¼ 21/ks. Themass of the colloidal
particle is set to M ¼ 4ps3mr/3 ¼ 650m, such that the colloid is
neutrally buoyant. Between two MPC collision steps, Nmd

molecular dynamics steps are employed. The equations of
motion are integrated by the velocity-Verlet algorithm with a
time step Dt ¼ h/Nmd, where we use Nmd ¼ 50.

In most cases the bounce-back collision is applied to the
interaction between solvent particles and immobile planar
walls, where the particle velocity is simply reversed. Here in
contrast, an elastic collision is performed when a point-like
solvent particle with velocity v is moving towards the spherical
colloid and is closer to it than rb, this is r < rb. The colloidal
particle has a linear velocity V, an angular velocity u, and a
moment of inertia I ¼ cMs2, with c ¼ 2/5 the gyration ratio.
Since the collision is now performed with a moving object, the
relevant quantity for the collision is ~v, namely, the solvent
particle velocity relative to the colloid at the colliding point,

~v ¼ v � V � u � s, (2)

where s¼ r� R, with r and R, the position of the solvent particle
and of the center of the colloid, respectively. In the following, we
refer to s as the contact vector and ~v as the contact velocity. The
conservation of linear and angular momentum imposes the
following explicit expressions for the post-collision velocities

v0 ¼ v � p/m,

V0 ¼ V + p/M, (3)

u0 ¼ u + (s � p)/I.
6210 | Soft Matter, 2014, 10, 6208–6218
The precise form of the momentum exchange p can be
calculated in terms of the normal and tangential components of
the contact velocity ~vn¼ ŝ(̂s$~v), and ~vt¼ ~v � ~vn, with ŝ¼ s/|s| the
unit contact vector. Imposing the conservation of kinetic energy
and stick boundary condition (see calculation details in the
Appendix A) leads to ~v 0

n ¼ �~vn and ~vt
0
t ¼ �~v, which determines

p ¼ pn þ pt ¼ 2m~vn þ 2mcM

cM þ m
~vt; (4)

where m¼mM/(m +M) is the reducedmass. This collision rule is
similar to the one used in rough hard sphere systems,40,41

although in the present case the colliding pair is composed of a
point particle and a rough hard sphere.42 This collision does not
change the positions of the particles and, consequently, the
potential energy does not vary discontinuously.
B. Passive colloid with stick boundary: simulation results

In order to test the correct rotational dynamics of the proposed
model, we rst verify the exponential decay of the orientational
time-correlation function. This is expected to be,43

hn(t)$n(0)i ¼ exp(�2Drt), (5)

with n the body-xed orientation vector, and Dr the rotational
diffusion constant. A repulsive potential with k¼ 24 in eqn (1) is
chosen for the colloid–solvent interactions. Although other
choices would have been possible, the short range of this
potential is convenient since the hydrodynamic radius is
expected to be closer to the colloidal radius s, which makes
easier the comparison with analytical predictions. A t of eqn
(5) to our data (shown in Fig. 2) yields Dr ¼ 0.0015 in units of
(kB�T/ma2)1/2. In order to provide an analytical estimation of this
coefficient, it should be taken into account that within the cut-
off-radius, the number density of the solvent particles obeys r(r)
¼ re�U(r)/kBT due to the ideal gas equation of state of the MPC
solvent. This results into a position-dependent viscosity. In the
following, we refer to the local number density at the colloid
surface as rs ¼ r(s) ¼ re�1. The corresponding dynamic and
kinematic viscosity at the particle surface are obtained using the
dependence of h on r from the kinetic theory.32 For the MPC
passive colloidal sphere. Symbols refer to simulation results, and the
line to eqn (5).

This journal is © The Royal Society of Chemistry 2014
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solvent employed parameters, we obtain a global shear viscosity
h ¼ 7.93, a local shear hs ¼ 2.47, and a local kinematic viscosity
ns ¼ 0.67, corresponding to the solvent density at a distance s

from the center of the colloid. The Stokes–Einstein equation for
the rotational diffusion provides the dependence Dr ¼ kBT/zH,
with the hydrodynamic rotational friction zH ¼ 8phss

3. With
this approximation, we obtain Dr ¼ 0.001, which underesti-
mates, but is still consistent with the simulation result.

The rotation dynamics can be further analyzed by measuring
the angular velocity autocorrelation function of the colloidal
particle. For short times, Enskog kinetic theory36,44 predicts that
the autocorrelation function follows a exponential decay,

lim
t/0

huðtÞ$uð0Þi ¼ �u2
�
expð�zEt=IÞ; (6)

with hu2i ¼ 3kBT/I, as obtained from energy equipartition
theorem, and zE the Enskog rotational friction coefficient of a
sphere suspended in bath of point-like particles,42

zE ¼ 8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBTm

p
rss

4 cM

mþ cM
: (7)

For long times, the relaxation of the correlation function is
predicted by hydrodynamic mode-coupling theory36,45 to decay
algebraically,

lim
t/N

huðtÞ$uð0Þi ¼ 3pkBT

mrsð4pnstÞ5=2
: (8)

The angular velocity autocorrelation function obtained from
simulations is displayed in Fig. 3. It agrees very well with the
theoretical predictions at short and long time regimes respec-
tively in eqn (6) and (8), where no adjustable parameter is
employed. On the other hand, the rotational diffusion coeffi-
cient can be understood to be determined by the total friction z,
with 1/z ¼ 1/zH + 1/zE. Considering both terms, the analytical
prediction is Dr ¼ kBT/z ¼ 0.002, which overestimates then the
measured value of Dr. Improvements to this estimation should
follow different simultaneous routes. A more accurate treat-
ment of the density and viscosity inhomogeneity is to solve the
Fig. 3 Time decay of the angular velocity autocorrelation function of
passive colloidal sphere. Symbols correspond to simulation results, the
dashed line to short-time Enskog prediction in eqn (6) and solid line to
the long-time hydrodynamic prediction in eqn (8).

This journal is © The Royal Society of Chemistry 2014
Stokes equation with a inhomogeneous viscosity prole.46 The
Enskog and the hydrodynamic times scales are not enough
separated in this case to consider the previous additive depen-
dence as accurate. In conclusion, these results ensure that the
coarse-graining model introduced here describes physically
correct rotational dynamics where no surface thermalization
has been employed. This is the basic colloidmodel on which the
Janus structure can be further introduced.
C. Self-thermophoretic Janus colloid

In the presence of a temperature gradient a suspended colloid
experiences a directed force as a result of the unbalance of the
solvent–colloid interactions, this translates into the particle
dri most frequently towards cold areas, but eventually also
towards warm areas. This effect is know as thermophoresis.47–49

A Janus particle partially made/coated with a material of high
heat absorption and heated, for example with a laser, develops
around it an asymmetric temperature distribution.5 The local
temperature asymmetry therefore induces a signicant ther-
mophoretic force on the Janus particle. Depending on the
nature (thermophilic/thermophobic) of the colloid–solvent
interactions, the thrust will be exerted towards or against the
temperature gradient.

The simulation model combines now the rotating colloid
introduced in the preceding section, with elements of the
previously investigated self-thermophoretic dimer.19 In partic-
ular, we impose a temperature Th (higher than the bulk
temperature �T) in a small layer (z0.08s) around the heated
hemisphere. The temperature Th is achieved by rescaling the
thermal energy of the solvent particles within this layer. In this
work we have restricted ourselves to Th ¼ 1.25�T , although a
large range of possible values is accessible. The inserted energy
is drained from the system by thermalizing the mean temper-
ature of the system to a xed value �T. In experiments, the
thermalization is performed at the system boundaries.
Although these two thermalizations are intrinsically different,
Fig. 4 Temperature distribution induced by a self-thermophoretic
Janus particle. Here, the Janus particle has a repulsive LJ potential with
k ¼ 3. The right (h) and the left (n) hemisphere correspond to the
heated and the non-heated parts, respectively. Because of axis-
symmetry, only the distribution in a section across the axis is displayed.

Soft Matter, 2014, 10, 6208–6218 | 6211
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Fig. 6 MSD of the center-of-mass of the Janus particle along the
polar axis as a function of time. Simulation parameters are those of
Fig. 5. Lines correspond to fits with eqn (9).
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the differences are expected to be negligible, when the system is
large enough, and especially when considering the neighbor-
hood of the Janus particle. A typical temperature distribution
generated by the Janus particle is plotted in Fig. 4.

Two different colloid–solvent potentials of LJ-type eqn (1) are
employed in the simulations provided here, a so repulsive
potential with k¼ 3, and a short-range attractive potential with k
¼ 24. The particular shape of the colloid–solvent potential has
already shown19,34 to inuence the magnitude of the thermo-
phoretic force, and interestingly also its direction. The repulsive
LJ potential is expected to produce a thrust pointing to the
heated hemisphere; while the attractive potential will lead to a
driving force in the opposite direction. Two procedures are
employed to quantify the self-propelled velocity vp. A direct
characterization can be performed by projecting the center-of-
mass velocity of the Janus particle on its polar axis, vp ¼ hV$ni.
Fig. 5 shows how direct measurements of vp are well-dened for
different interaction potentials as a function of time, which is
employed as an averaging parameter. Indirect determination of
vp is obtained by measuring the mean square displacement
(MSD) of the Janus particle along its polar axis. In this direction,
the motion of the Janus particle can be divided into a pure
diffusion and a pure dri, and it is related to the self-propelled
velocity via

h(Dxp)2i ¼ 2Dpt + vp
2t2. (9)

Here Dp is the translational diffusion coefficient of the Janus
particle along its axis. The mean square displacement in the
polar direction is shown in Fig. 6 as a function of time for Janus
particles with different colloid–solvent interactions. At very
small times, an initial inertial regime with a quadratic time
dependence is observed. For times larger than the Brownian
time, the diffusive behavior coexists with the presence of the
self-propelled velocity as indicated in eqn (9). A t to the data
allows us to determine both Dp and vp with good accuracy.
Fig. 5 Self-propelled velocity as a function of time as averaging
parameter. Triangles refer to self-thermophoretic Janus particles with
repulsive and attractive LJ-type potentials. Circles refer to self-dif-
fusiophoretic Janus particles. Solid symbols refer to forward motion,
namely along the polar axis towards the functional part. Open symbols
refer to backwards motion. For reference, squares denote the velocity
measured for a purely passive colloid.

6212 | Soft Matter, 2014, 10, 6208–6218
Direct and indirect determination of vp agree very well within
the statistical accuracy, as can be seen in Table 1. Note that by
measuring the MSD along the polar axis, instead of in the
laboratory frame, we suppress the contribution due to trans-
lation–rotation coupling, such that direct comparison with the
analytical prediction by Golestanian50 is not appropriate.

The quantitative values of the propelled velocities are
determined by the nature of the thermophoretic forces. As in
the case of thermophoretic microdimers,19 these forces are
related to the temperature gradients VT, and the thermal
diffusion factor aT which characterizes the particularities of the
colloid–solvent interactions.34,49,51 The self-propelled velocity is
then vp ¼ �aTVkBT/gp, with gp the particle translational fric-
tional coefficient and Dp ¼ kBT/gp. The hydrodynamic trans-
lational frictional coefficient is gHp ¼ Bhs with B being a
numerical factor given by the boundary conditions. Colloids
with stick boundary conditions have B¼ 6p, while colloids with
slip boundary conditions have B ¼ 4p. The here proposed
model provides stick boundary conditions for colloids at r x rb
¼ swith the surface viscosity hs, and slip for r > rb, whichmeans
that the overall colloid behavior will be effectively partial slip.
The stick boundary approach predicts kBT/(6phs) x 0.0027,
such that the slightly larger simulation results in Table 1 are
consistent with the partial slip prediction. In principle these
values should still be corrected by considering the Enskog
contribution and nite size effects. However, the precise form
and validity of these corrections is still under debate for colloids
simulated with MPC.26,42 It can be observed that the values for
Table 1 Summary of the self-propelled velocities, and the diffusion
coefficient of the thermophoretic and diffusiophoretic Janus particles
obtained from the simulations with the direct and indirect methods.
For comparison the same quantities are displayed for our prior results
on the thermophoretic microdimers19

Therm-att Therm-rep Diff-A / B Diff-B / A

vp (direct) �0.0131 0.0030 �0.0065 0.0059
vp (indirect) �0.0133 0.0035 �0.0070 0.0059
Dp (indirect) 0.0029 0.0035 0.0032 0.0032
vp (dimer) �0.0068 0.0047
Dp (dimer) 0.0028 0.0034

This journal is © The Royal Society of Chemistry 2014
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the thermophoretic attractive potential are smaller than those
for the repulsive one, which reects the larger viscosity hs

provided by the attractive surface interactions. Interestingly, the
values for Dp of the thermophoretic dimers are very similar to
those of the Janus particles. This can be understood as the
result of two canceling effects. On the one hand the microdimer
has larger size than the Janus particle, which decreases the
translational diffusion. On the other hand, the microdimer is
simulated with slip boundary conditions, which reduces the
friction in comparison with the stick, or partial slip boundary
conditions employed for the Janus particle. Given that Dp is not
signicantly changing for the results in Table 1, the variation of
numerical values of vp can be related to the differences in VT
and aT. The actual value of VT varies along the particle surface,
and it is not the same for both particle geometries. The deter-
mination of aT is given by the size, the geometry, and the
specic interactions between the colloid and the solvent. The
comparison of the measured vp for the dimer and the Janus
particles is therefore non-trivial and deserves a more in-depth
investigation. Furthermore, the bounce-back surface consid-
ered in the Janus particle model produces an additional ther-
mophobic thrust, which could explain the enhanced value of
the Janus particle with attractive interactions.

In the presence of a temperature gradient, the transport of
heat is a relevant process which in experimental systems occurs
in a much faster time scale than the particle thermopho-
resis.5,47,52 For thermal energy propagation the characteristic
time is sk � a2/k with k the thermal diffusivity, and the time
scale of particle motion is related to the self-propelled velocity
by sm � a/vp. Using k estimated from kinetic theory32 and the
measured vp, we have sk/sm � 10�1 for our simulation param-
eters. This means that both times are also well-separated in the
simulations, and that temperature prole around the swimmer
is almost time-independent.
Fig. 7 Potential interactions between the two solvent species and the
Janus particle. UA(r) is defined in eqn (10) and UB(r) in eqn (1). Inset:
schematic representation of the catalytic and non-catalytic hemi-
spheres of the Janus particle and the interaction of the A and B species
with each hemisphere, for the A / B reaction.
D. Self-diffusiophoretic Janus colloid

A colloidal particle with a well-dened part of its surface with
catalytic properties can display self-propelled motion.1,3,13,14,53

Such functional or catalytic part of the Janus particle catalyzes a
chemical reaction, which creates a surrounding concentration
gradient of the solvent components involved in the reaction,
which typically have different interactions with the colloid. This
gradient in turn induces a mechanical driving force (dif-
fusiophoretic force) on the Janus particle and hence propulsion.
The direction of the self-propelled motion will be related to the
interaction of each solvent component with the colloid.
Chemical reactions are generally accompanied by an adsorption
or emission of energy. A catalytic Janus particle could therefore
generate a local temperature gradient which would induce an
additional thermophoretic thrust. However, existing experi-
ments of Pt–Au micro-rods1 have shown the contribution of this
effect to be negligible.

The effect of irreversible chemical reactions has already been
included in a MPC simulation study of chemically powered
nanodimers by Rückner and Kapral.17 Similar to that work, we
here consider a solvent with two species A and B, together with
This journal is © The Royal Society of Chemistry 2014
the model of the stick boundary colloid previously introduced.
The reaction A/ B is performed with a probability pR whenever
an A-solvent particle is closer than a distance r1 to the catalytic
hemisphere of the Janus particle (see inset of Fig. 7). Besides
this reaction, A and B solvent particles interact simply via the
MPC collision. Another important element to induce self-
propelled motion is that the interaction of each component
with the colloid surface should be different.17 We therefore
consider that solvent species A and B interact with the Janus
particle with different potentials UA(r) and UB(r), but with the
same bounce-back rule. A change of potential energy at the
point where the A / B reaction occurs could be numerically
unstable, and would lead to a local heating or cooling of the
surrounding solvent. In order to model here a purely dif-
fusiophoretic swimmer, we choose smoothly varying potentials
UA(r) and UB(r) which completely overlap for r # r1, ensuring a
reaction without an energy jump. We consider UB(r) as the
repulsive LJ-type potential in eqn (1) with k ¼ 12. UA(r) in Fig. 7
is constructed in four intervals by a cubic spline interpolation,
which yields to

UAðrÞ ¼

UBðrÞ ðr# r1Þ
a0 þ a1rþ a2r

2 þ a3r
3 ðr1 # r# r2Þ

b0 þ b1rþ b2r
2 þ b3r

3 ðr2 # r# r3Þ
0 ðr3 # rÞ

8>>><
>>>:

(10)

where the coefficients and the distances to determine the
related intervals are specied in the Table 2.

Simulations are initiated with a solvent composed only of A-
type particles. The considered chemical reaction A / B in the
catalytic part of the Janus particle is irreversible, such that A-
type solvent particles are gradually consumed. Chemically
reacting systems with different spatial distributions can in
principle be implemented.54 We choose a simple scheme to
keep a stationary concentration gradient. The reaction proba-
bility is xed to pR ¼ 0.1, and whenever a B-type particle
is beyond a distance d from the Janus particle (we consider
d ¼ 5s), it automatically converts into A. This allows the system
Soft Matter, 2014, 10, 6208–6218 | 6213
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Table 2 Coefficients employed in the simulations for the potential
function UA in eqn (10)

a0 ¼ 844.6 a1 ¼ �849.7 a2 ¼ 280.7 a3 ¼ �30.3
b0 ¼ 3283 b1 ¼ �3610 b2 ¼ 1322 b3 ¼ �161.4
rb ¼ s r1 ¼ 1.0132s r2 ¼ 1.06s r3 ¼ 1.12s

Fig. 8 Local number density distribution of B-type particles induced
by a self-diffusiophoretic Janus particle with the A / B reaction. The
right hemisphere corresponds to the catalytic part.
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to reach an steady-state concentration distribution of B mole-
cules around the swimmer. Fig. 8 shows rB, the number of B-
type particles per unit cell. It can be seen that on the catalytic
hemisphere there are mostly B-type particles, while on the non-
catalytic hemisphere the situation is reversed and there are
mostly A-particles. For comparison, the reaction B / A is also
considered by reversing the roles of A and B. The self-propelled
velocity is quantied by using the direct and indirect methods
as already described for the self-thermophoretic Janus particles.
The results are displayed separately in Fig. 5 and 6, and the
numerical values are summarized in Table 1 where the nice
agreement between the methods can be observed. The diffusion
coefficients for both diffusiophoretic Janus particles are the
same, which is related to the fact that at the surface both
potentials are the same. The value of the self-propulsion
velocity, vp, is determined by the choice of the colloid–solvent
potentials, the reaction probability and the boundary condi-
tions. For the considered A / B reaction with UB(r) repulsive,
and UA(r) attractive, the concentration gradient pushes the
Janus particle against the direction of the polar axis n.
Conversely, the reaction B / A pushes the Janus particle along
n as can be veried in Fig. 5 and Table 1. It should be noted that
the values of the velocities in both simulations are not exactly
reversed, since the reciprocal choice of potentials does not
correspond to a perfectly reverse distribution of the species
concentrations. A comparison of the velocities for the dif-
fusiophoretic Janus particle in this work, and the existing data
for microdimers and Janus particles17,22 is not really straight-
forward since the employed parameters and potentials are
different. The systems are though not so different, and the
values of vp range from similar values to approximately four
times smaller.

The time scale of the particle motion of a self-diffusiopho-
retic swimmer sm needs to be compared with the time scale of
6214 | Soft Matter, 2014, 10, 6208–6218
solvent molecule diffusion ss, which is a much faster process in
experimental systems. The solvent diffusion coefficient Ds

determines ss¼ a2/Ds. For the employed simulation parameters,
Ds from the kinetic theory, and the measured vp determine the
separation of both time scales to be ss/sm � 10�1.
III. Flow field around phoretic
swimmers

In the previous section, an efficient model to simulate the
behavior of self-phoretic Janus particles has been introduced,
and the obtained velocities have been related with the employed
system parameters. Another fundamental aspect in the inves-
tigation of microswimmers is the effect of hydrodynamic
interactions,55 and how do these compare with the effect of
concentration or temperature gradients. In the case of self-
phoretic particles, the temperature or concentration distribu-
tions decay with 1/r around the particle, such that their gradi-
ents decay as 1/r2. Furthermore, the hydrodynamic interactions
have shown to be fundamentally different for swimmers of
various geometries and propulsion mechanisms, yielding to
phenomenologically different behaviors classied in three
types: pullers, pushers, and neutral swimmers.55 In the
following, we investigate the solvent velocity elds generated by
the self-phoretic Janus particles, as well as those generated by
self-phoretic microdimers, and in both cases the analytical
predictions are compared with simulation results. The velocity
eld around a self-propelled particle can be analytically calcu-
lated from the Navier–Stokes equation. Here, we solve the
Stokes equation, which neglects the effect of inertia due to very
small Reynolds number, and consider the incompressible uid
condition.10,35 Note that although MPC has the equation of state
of an ideal gas, the compressibility effects of the associated ow
elds have shown to be very small in the case of thermophoretic
particles.35 We also implicitly assume that the standard
boundary layer approximation is valid, this is that the particle–
solvent interactions are short-ranged. Moreover, we have
assumed that the viscosity of solvent is constant along the
particle surface, which neglects the temperature or concentra-
tion dependence of the viscosity. Finally, in order to solve the
Stokes equation, three hydrodynamic boundary conditions
need to be determined. In the particle reference frame the
normal component of the ow eld at the particle surface
vanishes. Considering sufficiently large systems, it is reasonable
to assume vanishing velocity eld at innity. Finally, the inte-
gral of the stress tensor over the particle surface has to be
identied in each geometry.
A. Self-phoretic Janus particle

For a self-phoretic Janus particle, the propulsion force balances
with the friction force due to the particle motion, such that the
integral of stress tensor over the particle surface vanishes. These
conditions are the same as for a thermophoretic particle
moving in an external temperature gradient, case already
investigated in our previous work.35 The velocity eld resulting
from solving the Stokes equation reads,
This journal is © The Royal Society of Chemistry 2014
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Fig. 10 Rescaled flow velocity, v$n, as a function of the distance to the
center of the Janus particle (positive direction towards the functional
part). Symbols refer to the simulation results, and lines to the predic-
tions in eqn (11). (a) Velocity along the axis n, va. (b) Velocity along the
axis perpendicular to n, vb. The insets correspond to the same data in
logarithm representation.
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vðrÞ ¼ s3

2r3

�
3
rr

r2
� I
�
$vp; (11)

with I the unit tensor, r the distance to the colloid center, and r
¼ |r|. eqn (11) indicates that the velocity eld is a source
dipole, which decays fast with the distance as 1/r3. It is
therefore to be expected that in suspensions of the self-pho-
retic Janus particles, the hydrodynamic interactions are negli-
gible in comparison to the effects of concentration or
temperature gradients.

Direct measurements of the ow eld around the micro-
swimmers can be performed in the simulations and allow a
quantitative comparison with the analytical expression. Since
only small differences are expected between the two discussed
types of phoretic swimmers, we focus in the following on the
thermophoretic microswimmers. Fig. 9 shows the velocity eld
induced by a self-thermophoretic Janus particle with a ther-
mophobic surface in a section across the particle center. The
measured velocity eld has a source-dipole type pattern, in
which propulsion and ow eld along the particle axis have the
same direction as expected from the analytical prediction in eqn
(11). The position where the ow eld is measured corresponds
to the reference frame of the Janus particle. However, the ow
velocity itself is given in laboratory frame, namely uid velocity
at the surface of the Janus particle is nite and vanishes at
innity. The quantitative values of the simulated velocity elds
are compared with the analytical predictions in Fig. 10 for both
the self-thermophoretic and the self-diffusiophoretic Janus
particle. The ow eld component along the Janus particle axis,
v$n, is displayed along the Janus particle axis n in Fig. 10a and
perpendicular to it in Fig. 10b. Simulation results and analytical
predictions are in very good agreement without any adjustable
parameter, although on the axis perpendicular to n the theory
slightly underestimates the velocity eld of the self-thermo-
phoretic Janus particle at short distances. The underestimation
Fig. 9 Velocity field induced by a self-thermophoretic Janus particle
with a thermophobic surface. The left (h) and the right (n) hemisphere
corresponds to the heated and the non-heated part, respectively.
Propulsion and flow field on the axis n point in the same direction.
Small arrows represents the flow velocity magnitude and direction,
and lines refer to the streamlines of the flow field. The background
color code does not precisely correspond to the temperature distri-
bution, and should be taken as a guide to the eye.

This journal is © The Royal Society of Chemistry 2014
probably arises from the sharp change of the solvent properties
at the border between the functional and non-functional
hemispheres,56 which is disregarded in the present analytical
calculation. Interestingly this effect seems smaller for the
catalytic Janus particle in the direction perpendicular to the
propulsion axis. Further investigation and more accurate data
will shed some light in this respect.
B. Self-phoretic microdimer

Besides the Janus particle, other particle geometries have been
shown to be easy to construct phoretic swimmers. Such an
alternative is the microdimer,17,19,57 composed of two strongly
attached beads, in which one bead acts as the functional end,
and the other bead as the non-functional one. The Stokes
equation can be solved independently for each bead, and the
total velocity eld around the self-propelled microdimer can be
approximated as a superposition of these two velocity
elds. The dimer is a typical force dipole such that integral of
stress tensor over each bead is non-zero, although their sum
vanishes. This is fundamentally different from the case of the
Janus particle.8,56 The integral over the functional bead corre-
sponds to the frictional force, which is associated with
the propulsion velocity by �gvp, with g the friction coefficient.
The integral over the non-functional bead corresponds to the
driving force which has the same magnitude as the
friction force, but opposite direction; this results in zero net
force on the dimer. By solving the Stokes equation, the
velocity eld produced by the functional and non-functional
beads are

vfðrÞ ¼ s

2
		r� rf

		
 


r� rf
�

r� rf

�
		r� rf

		2 þ I

!
$vp; (12)
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Fig. 11 Solvent velocity field and stream lines induced by self-ther-
mophoretic microdimers. (a) Pusher-type of swimmer for a thermo-
philic microdimer. (b) Puller-type of swimmer for a thermophobic
microdimer. The left bead (h) corresponds to the heated bead, and the
right (n) to the non-heated one, nh stands for thermophilic bead, and
nc for thermophobic.

Fig. 12 Rescaled flow velocity as a function of distance to the dimer
center of mass. Symbols refer to the simulation results, and discon-
tinuous lines to the theoretical prediction in eqn (14). Solid symbols
regard dimers with a thermophilic bead and a pusher-like behavior.
Open symbols regard dimers with a thermophobic bead and a puller-
like behavior. For comparison, thin solid lines corresponds to the flow
of the Janus particle in eqn (11). (a) Velocity along the dimer axis, va.
Triangles and circles correspond to the velocities on the left and right
sides of the dimer center, respectively. (b) Velocity perpendicular to
the dimer axis, vb, with positive direction pointing to the dimer center.
The insets correspond to the same data in logarithm representation.
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and

vnfðrÞ ¼ � s

2
		r� rnf

		
 


r� rnf
�

r� rnf

�
		r� rnf

		2 þ I

!
$vp

þ s3		r� rnf
		3
 
3


r� rnf

�

r� rnf

�
		r� rnf

		2 � I

!
$vp; (13)

respectively. Here, rf and rnf are the position coordinates of the
functional and non-functional beads, respectively. Note that the
second term on the right side of eqn (13) corresponds to a
source dipole, which arises from the excluded volume effect of
the bead (vanishing for point particle). Thus, the total velocity
eld around the self-propelled microdimer can be approxi-
mated by

v(r) ¼ vf(r) + vnf(r) � 1/r2 (14)

where, 1/r2 refers to the far-eld behaviour of the ow.
Consequently, in suspensions composed of phoretic micro-

dimers the hydrodynamic interactions are comparable to the
contributions coming from concentration or temperature
gradients. Furthermore, the near-eld hydrodynamic behaviors
of the dimer also differ remarkably from the Janus particle.

Simulations of self-thermophoretic dimers allow us to
perform precise measurements of the induced ow eld. The
simulation model is the same one as employed in our previous
work19 where each bead has a radius s ¼ 2.5a and the distance
between the beads centers is d ¼ |rnf � rf| ¼ 5.5a. The inter-
actions between the beads and the solvent are of Lennard-Jones
type, cf. eqn (1). The heated bead interacts with the solvent
through a repulsive potential (C ¼ 3 and k ¼ 24), while for the
phoretic bead two different interactions have been chosen, an
attractive (C ¼ 0 and k ¼ 48) and a repulsive interaction (C ¼ 3

and k ¼ 3). The solvent velocity eld is computed around the
dimer and displayed for dimers with both interaction types in
Fig. 11. In spite of the opposite orientations and the difference
in intensity, the pattern of the two ow elds are very similar.
The velocity eld on the axis across the dimer center and
perpendicular to the symmetry axis is, for the microdimer with
thermophilic interactions (repulsive), oriented towards the
dimer center, while for the thermophobic dimer (attractive
interactions) is oriented against the dimer center. This is
consistent with the well-known hydrodynamic character of
force dipoles,55 and has further important consequences. If
another dimer or particle is placed lateral and close to the
dimer, the ow eld will exert certain attraction in the case of a
thermophilic microdimer and certain repulsion in the case of a
thermophobic microdimer, which allows us to identify them
respectively as pushers and pullers.

A quantitative comparison of the simulated velocity elds
with the analytical prediction in eqn (14) is presented in Fig. 12
for both a pusher- and puller-type microdimer. The ow eld
component on the microdimer axis analyzed along such axis is
displayed in Fig. 12a for the le and right branches. The ow
eld component perpendicular to the microdimer axis analyzed
along such axis is displayed in Fig. 12b. The small observed
deviations of the simulations from the analytical predictions are
6216 | Soft Matter, 2014, 10, 6208–6218 This journal is © The Royal Society of Chemistry 2014
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due to different factors. Besides the statistical errors, the
superposition approximation in eqn (14) is less precise in the
case of nearby beads. In the direction perpendicular to the dimer
axis, nite size effects play also an important role. Due to the
symmetry of the ow lines and the presence of periodic images,
the condition of vanishing ow velocity occurs at the border of
the simulation box. This decreases the values of the ow velocity
with respect to the analytic solution which considers vanishing
ow velocity at innite distance. In spite of these considerations,
Fig. 12 shows in all cases that the analytical solution of the
Stokes equation agrees very nicely with the results from the MPC
simulations without any adjustable parameter, which consti-
tutes a convincing validation for both the analytical approxi-
mations and the model employed in the simulations.

IV. Conclusions

A coarse grained model to simulate a self-phoretic Janus
particle in which hydrodynamic interactions are consistently
implemented is here proposed and analyzed. The Janus particle
is provided with a proper rotation dynamics through stick
particle boundary conditions. These are modeled by bounce-
back collisions which reverse the direction of motion of the
solvent particle with respect to the moving colloidal surface.
The collisions are imposed to conserve linear and angular
momentum, as well as kinetic energy. A strong self-phoretic
effect is realized by using a so particle–solvent potential
implemented in a larger interaction distance than the bounce-
back collisions. With this model both the self-thermophoretic
and the self-diffusiophoretic Janus particles are simulated in a
straightforward manner, which further justies the model val-
idity. The model implementation details are most likely also
applicable to other simulation methods like lattice Boltzmann,
or MD. Simulations to quantify the ow elds induced by the
self-phoretic Janus and dimer microswimmers are then also
performed, and satisfactorily compared with corresponding
analytical predictions. The ow eld around the self-phoretic
Janus particle shows to be short ranged, as it is typical from
neutral swimmers. In contrast, self-phoretic microdimers
induce a long-ranged ow eld. Dimers propelled towards the
functional bead, as thermophilic microdimers, show a hydro-
dynamic lateral attraction typical from pushers. Conversely,
dimers propelled against the functional bead, as thermophobic
microdimers, show a hydrodynamic lateral repulsion typical
from pullers. These fundamental differences will result in
systems with very different collective properties, for which our
simulation model is very adequately suited.

V. Appendix A: bounce-back with a
moving spherical particle

Considering the contact velocity in eqn (2) and the post-colli-
sion quantities in eqn (3), the post-collision contact velocity can
be calculated as

~v0 ¼ ~v� p

m
þ 1

cM
ŝ ŝ$pð Þ � p½ �; (A1)
This journal is © The Royal Society of Chemistry 2014
where the relation of the vector triple product with the scalar
product has been employed. The difference between the relative
pre- and post-collision velocity, D~v ¼ ~v0 � ~v, can be decomposed
into a normal and a tangential component as

D~vn ¼ � 1

m
ŝ ŝ$pð Þ (A2)

D~vt ¼
h
ŝ ŝ$pð Þ � p

i�1
m
þ 1

cM

�
; (A3)

with which p can expressed as

p ¼ m

�
D~vn þ cM

cM þ m
D~vt

�
; (A4)

The difference in kinetic energy before and aer the collision
can be calculated from the pre- and post-collision velocities in
eqn (3) as

DE ¼ �2p$~vþ p2

m
þ 1

cM
p2 � ŝ$pð Þ2
h i

; (A5)

where the circular shi property of the mixed product has been
used. Employing the expression of D~vn in eqn (A2) and of p and
p2 which can be obtained from eqn (A4), the previous expres-
sion can be rewritten as

DE ¼ m

2



2~vþ D~vn

�
$D~vn þ 1

2

cM

cM þ m



2~vþ D~vt

�
$D~vt: (A6)

To ensure a collision with energy conservation, it is neces-
sary that both components of the previous expression vanish,
since the prefactors are determined by the system under study.
Using orthogonality of normal and tangential velocity compo-
nents the two previous conditions translate into, ~vn

2 ¼ ~v 0
n
2 and

~vt
2 ¼ ~v 0

t
2. Two physical meaningful solutions exist, both with ~vn

¼ �~v 0
n. One is the specular reection of smooth hard spheres, ~vt

¼ ~v 0
t, which is well-known to imply slip-boundary condition.

Another solution is the bounce-back reection of rough hard
spheres, ~vt ¼ �~v 0

t, which enforces a no-slip boundary condition
between the solvent and the solute. With both conditions it is
possible to express D~v and hence p in terms of the components
of the pre-collision contact velocity ~v, which is specied in eqn
(4) for the no-slip condition employed in this work.
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