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Phonon dispersion and elastic moduli of two-dimensional disordered colloidal
packings of soft particles with frictional interactions
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Particle tracking and displacement covariance matrix techniques are employed to investigate the phonon
dispersion relations of two-dimensional colloidal glasses composed of soft, thermoresponsive microgel particles
whose temperature-sensitive size permits in situ variation of particle packing fraction. Bulk, B, and shear, G,
moduli of the colloidal glasses are extracted from the dispersion relations as a function of packing fraction, and
variation of the ratio G/B with packing fraction is found to agree quantitatively with predictions for jammed
packings of frictional soft particles. In addition, G and B individually agree with numerical predictions for
frictional particles. This remarkable level of agreement enabled us to extract an energy scale for the interparticle
interaction from the individual elastic constants and to derive an approximate estimate for the interparticle friction
coefficient.
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A packing of ideal spheres at the jamming transition is
barely solid. The ratio of the shear modulus to the bulk
modulus, G/B, vanishes, as it does for a liquid, and the number
of interparticle contacts is exactly the minimum number
needed for mechanical stability, namely the isostatic number,
zc = 2D, where D is the dimensionality [1]. Above the
jamming transition, G/B increases linearly with the number of
excess contacts, z − zc [1–3], or equivalently, with (φ − φc)1/2,
where φ is the packing fraction and φc is the packing fraction
at the transition. This scaling relation is a defining property
of the jamming transition; it sets jammed packings apart from
other solids whose interparticle contact number can be varied
above the isostatic value, such as networks near the rigidity
percolation threshold [4] and decorated isostatic lattices [5,6].

Despite its central importance to jamming transition theory,
the behavior of G/B has proven challenging to measure
experimentally. Among all the relations predicted near the
jamming transition [3], only the dependence of the excess
contact number, z − zc [7,8], and the bulk modulus, B [8],
on the excess packing fraction, φ − φc, have been tested
experimentally. Here we circumvent traditional technical
difficulties in measuring both G and B by employing video
microscopy on two-dimensional disordered colloidal packings
to measure phonon dispersion relations.

The glassy colloidal suspensions are composed of poly(N -
isopropyl acrylamide) (PNIPAM) soft hydrogel particles,
whose packing fraction, φ, can be tuned in situ by changing
temperature. Such systems have proven useful for studying the
properties of colloidal packings near the jamming transition
[9–12]. We employ displacement covariance matrix analysis
[9,12–15] to obtain the system’s eigenmodes and eigenfre-
quencies. Using an analysis similar to those in earlier studies
[14,16,17], we obtain the phonon dispersion relation, ω(q), for
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the vibrational modes of a “shadow system” with equivalent
particle configuration and interactions but without damping.
Sound velocities and elastic moduli are then derived from the
dispersion relation.

While most studies of colloidal suspensions are interpreted
without invoking direct frictional interactions between parti-
cles, such effects can arise [18,19]. The present experiments
allow direct comparison with models of jammed systems
with [20,21] and without [1] inter-particle friction. We find
unambiguously that the particles have frictional interactions;
from the dependence of the elastic constants on the packing
fraction, we extract an estimate of the coefficient of friction,
μ, as well as the strength of interparticle interactions, ε.

PNIPAM particles with different diameters were synthe-
sized by surfactant-free radical emulsion polymerization, as
described elsewhere [22]. These particular PNIPAM particles
are more strongly cross-linked in their cores compared to
their surfaces, and they are essentially charge-neutral; thus,
when pressed close together, polymeric chains of one particle
are very likely to interpenetrate and entangle with particle
chains of neighboring particles. Quasi-two-dimensional (2D)
packings [binary mixtures with dbig ≈ 1.4 μm and dsmall ≈
1.0 μm (at 26◦C)] were prepared by confining the suspension
between two microscope cover slips (Fisher Scientific) and
sealed with optical glue [23]. The diameter of the PNIPAM
particles changes with temperature, T ; d(T ) curves obtained
by dynamic light scattering can be found in the supporting
material [24]. Particle trajectory data were acquired using
standard bright field video microscopy in a narrow range of
temperatures, 26.4–27.2◦C. The temperature was controlled
by thermal coupling to the microscope objective (BiOptechs),
and the sample was equilibrated for 15 min at each temperature
before data acquisition. During this 15 min period, particle
rearrangements occurred as the system aged; to our knowledge,
no cage rearrangements occurred once data acquisition was
begun, except in the system at 27.2◦C, φ ≈ 0.863, the
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lowest φ studied. Note that the diameter ratio, dbig/dsmall,
varies by less than within 1% in the investigated range of
temperatures.

The trajectories of the N ≈ 3000 particles in the field of
view (≈67 × 50 μm) were extracted from a total of 30 000
frames of video at 110 frames/s using standard particle tracking
techniques. The packing fraction φ was calculated from the
measured number of particles and their hydrodynamic radii
(measured at low concentration) at the experiment temper-
ature. Note that changes in this “hydrodynamic” packing
fraction accurately reflect changes in the true packing fraction.
The absolute packing fractions, on the other hand, are typically
overestimated because the hydrodynamic radius in dynamic
light scattering experiments tends to be larger than the
diameter measured by static scattering techniques or direct
imaging.

To analyze the data, we employ the displacement covariance
matrix technique [9,13–15]. We define u(t) as the 2N -
component vector of displacements of all particles from their
time-averaged positions, and we extract the displacement
covariance matrix, Cij = 〈ui(t)uj (t)〉t , where i,j = 1, . . . ,2N

run over particles and coordinate directions, and the average
is taken over time frames. In the harmonic approximation and
in thermal equilibrium, Cij is directly related to the dynamical
matrix of the shadow system Dij = kBT C−1

ij /
√

mimj with
particle masses mi and mj . The eigenvectors of D are the
vibrational eigenmodes of the shadow system with polarization
vectors Pn (for n = 1, . . . ,2N ) and eigenfrequencies ωn =
( kBT
mλn

)1/2, where λ are the eigenvalues of covariance matrix C,
and m is the mass of a single sphere.

The vibrational mode frequencies thus extracted depend
on the experimental number of snapshots. We correct for
the error that arises from using a finite number of frames
by extrapolating to Nframes = ∞ and assuming that ω varies
linearly in 1/Nframes, as expected [25,26].

The Fourier decomposition of the eigenmodes into trans-
verse and longitudinal components yields two spectral func-
tions, fT and fL, respectively, for each mode of frequency ω

as a function of wave-vector magnitude q:

fT (q,ω) =
〈∣∣∣∣∣∑

n

q̂ × Pn(ω) exp(iq · rn)

∣∣∣∣∣
2〉

, (1)

fL(q,ω) =
〈∣∣∣∣∣∑

n

q̂ · Pn(ω) exp(iq · rn)

∣∣∣∣∣
2〉

, (2)

where rn is the equilibrium position of each particle, and the
angular brackets indicate an average over directions q̂ [27–29].

The maxima of these functions correspond to the phonon
wave vector with magnitude qT,L(ω) that constitute the
dispersion relation [14,28]. We recently applied this method
to a hexagonal colloidal crystal [26] and obtained the full
dispersion relation expected theoretically [30], as have earlier
colloidal experiments [16,31–33]. In the long-wavelength
limit, the dispersion curve is linear and its slope gives
the longitudinal and transverse sound velocities: cT,L =
limq→0(∂ω/∂q).

In practice, the procedure for extracting the maximum value
of fT,L as a function of q for each mode yields rather noisy

(a) (b)

FIG. 1. (Color online) (a) Transverse and (b) longitudinal spec-
tral functions, fT (ω) and fL(ω), of the system at low, medium, and
high ω. Dashed lines show Gaussian fits to the peaks which were used
to extract q(ω) for each ω.

results for disordered colloidal packings [24], as expected from
numerical studies of jammed packings [29]. In contrast to
crystals, where the peak in fT,L is very sharp, for disordered
systems it has been shown [28] that the peak is relatively
broad and flat for frequencies above the so-called “boson peak
frequency” [34], ω∗ [which is (30–80) × 103 rad/s for our
experimental systems]. To extract the maximum of fT,L(q,ω)
more cleanly for each mode, we therefore fit fT,L to a Gaussian
in q to obtain qmax. Representative plots of fT,L are shown for
three different modes in Fig. 1, along with the fits used to
obtain qmax for each mode. Since a glass should be isotropic,
we average over many (>100) directions in Eqs. (1) and (2) to
improve the statistics.

The resulting dispersion relations are shown in Fig. 2(a) for
the intermediate packing fraction. The transverse (red circles)

(b)(a)

FIG. 2. (Color online) (a) Experimental dispersion relation for
PNIPAM glass with φ ≈ 0.87 (squares: longitudinal, circles: trans-
verse) plotted vs qσ with average diameter σ ≈ 1.1 μm. The
horizontal dashed line marks ω� ≈ 60 rad/s. Solid lines show linear
fits in the long-wavelength limit used to extract the sound velocities,
cL and cT . Inset: Sound velocities for the five investigated packing
fractions. Second-order polynomials (dotted lines) are guides for the
eye. (b) Numerical dispersion relation for frictionless particles with
harmonic repulsions (bidisperse with diameter ratio 1.4 at p = 10−2).
The horizontal dashed line marks ω� ≈ 0.03. Dashed red lines show
the slopes that would correspond to the elastic moduli measured
directly in the simulation (G = 0.053 and B = 0.43).
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and longitudinal (black squares) branches are binned in q; the
error bars show the standard error of all ω in the bin. For all
φ, the dispersion relation can be obtained from Gaussian fits
at least up to q ≈ 2 μm−1. In all, we studied five different
packings in the range 0.8626 � φ � 0.8822; the remaining
four sets of dispersion curves are shown in the Supplemental
Material [24]. In all cases, the curves are essentially linear at
low q and bend at higher q, as expected [17,28].

Note that most of the data lie at frequencies above the boson
peak frequency, ω∗. Previous simulations found that while the
dispersion relation for ω < ω∗ is linear in q, with a slope
consistent with the elastic constant expected for sound modes
[29], for ω 
 ω∗ the situation is different: the modes are not
plane-wave-like and the distinction between transverse and
longitudinal directions breaks down [28]. To corroborate that
the elastic constants can be extracted from dispersion relations
above ω∗, we compare to numerical calculations. Figure 2(b)
shows the transverse and longitudinal dispersion relations of
numerically generated jammed bidisperse packings, extracted
by fitting the peaks of fT,L(q,ω); the dispersion relations
remain linear in q up to frequencies about an order of
magnitude higher than ω∗, with slopes consistent with the
values of the elastic moduli, as indicated by the dashed lines.
These calculations were carried out at pressure p = 10−2,
where ω∗ ≈ 0.03 is in units of

√
ε/mσ 2, where ε is the

interaction strength of the particles which interact via harmonic
repulsion, σ is the average particle diameter, and m is the
particle mass. These results suggest that in analyzing the data,
we must restrict ourselves to a range of frequencies within an
order of magnitude of ω∗ in order to extract the sound velocities
from linear fits to the experimentally obtained dispersion
relations, i.e., over the range 0.25 < q < 1.00 μm−1 (solid
blue lines). The mass density 	 of the particles and the entire
system is very close to that of water (1000 kg/m3), and the
areal density is ρ2D = 	h, where h ≈ 1.4 × 10−6 m is the
height of the sample cell. We thus obtain the longitudinal
modulus, M = ρ2Dc2

l , the shear modulus G = ρ2Dc2
t , and

the bulk modulus, B = M − G, for each packing fraction
[Fig. 3(a)].

We also compare the magnitude of G from the experimental
dispersion relation to that measured in bulk rheology experi-
ments of jammed PNIPAM suspensions [35–37]. Expressed in
3D units, we find G to vary between ≈10 and 36 Pa, consistent
with earlier measurements on similar systems, which found a
range 4–20 Pa [35,36,38].

According to theoretical predictions for athermal systems
near the jamming transition [1,4], the ratio of the shear to
bulk modulus, G/B, should be independent of the interparticle
potential. For the frictionless case, numerically generated
packings are well-described by G/B ≈ 0.23�z(1 − 0.14�z),
where �z = z − z0

c and the frictionless isostatic number is
z0
c = 2D = 4 in two dimensions.

By contrast, for frictional particles, we find

G/B = 0.8(±0.1)�z∞[1 − 0.25(±0.05)�z∞] (3)

by fitting simulation data in Fig. 4(b) of Somfai et al. [20],
where �z∞ = z − z∞

c and the frictional isostatic number at
infinite friction is z∞

c = D + 1 = 3.

(b)(a)

(d)(c)

FIG. 3. (Color online) (a) Experimental bulk (B, circles) and
shear moduli (G, squares) as a function of packing fraction φ.
(b) Ratio G/B as a function of φ − φc. Dashed line shows the
expected curve for frictional spheres [20], where φ∞

c and φμ
c are

the fit parameters. For comparison, the solid red curve shows G/B

calculated for frictionless particles. (c) B/keff and G/keff as a function
of �z∞ = z − z∞

c with corresponding fits (see text); ε is the only fit
parameter. (d) B and G as a function of φ − φμ

c . Dashed lines are the
same fits as in (c).

Unfortunately, it is very difficult to deduce the contact
number directly from experiment. We can, however, analyze
the experimental findings using our packing fraction measure-
ments and a result that has been obtained from numerical
simulations of frictional particles [21]. For particles with finite
friction coefficient μ, the scaling relation between z − z∞

c and
φ − φ∞

c , where φ∞
c is the critical packing fraction at infinite

friction, depends on the critical packing fraction for parti-
cles with friction μ, φ

μ
c (note, φ∞

c � φ
μ
c � φ0

c ) [21]. Using
z − z

μ
c = C1(φ − φ

μ
c )0.5 and z

μ
c − z∞

c = C2(φμ
c − φ∞

c )1.7, we
fit our data to Eq. (3) with �z∞ = (z − z

μ
c ) + (zμ

c − z∞
c ) =

C1(φ − φ
μ
c )0.5 + C2(φμ

c − φ∞
c )1.7; from Ref. [21], C1 = 2.7 ±

0.6 and C2 = 65 ± 2. We note that the fitting involves two fit
parameters, φμ

c and φ∞
c . (Note also that, because φ

μ
c − φ∞

c is a
function of μ, we could have used μ as the second fit parameter
instead of φ

μ
c .)

The resulting best fit for G/B as a function of φ − φc is
shown in Fig. 3(b) (dashed line, φc = φ

μ
c ) together with the

expected curve for the frictionless form (solid line, φc = φ0
c ).

The agreement is excellent with the frictional form, whereas
the agreement with the frictionless form is poor. The results,
therefore, lead us to conclude that PNIPAM particles in
suspension experience interparticle friction effects.

The fit parameters are φ
μ
c ≈ 0.851 ± 0.005 and φ∞

c ≈
0.837 ± 0.01, indicating a μ of order unity or higher by
comparison to Ref. [21]. We note further that φ∞

c , and thus the
difference, φμ

c − φ∞
c , is particularly sensitive to small changes
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in C1, C2, and to the coefficients in Eq. (3). This sensitivity
limits the accuracy of our determination of μ. In addition, there
is significant uncertainty that arises in such estimates, because
the relationship between μ and z is model-dependent [39].

The interparticle friction effects suggested by the data above
are consistent with expectations based on the structure of
the colloidal particles. On a molecular scale, the particular
hydrogel particles utilized here are hairy at their surfaces,
with polymer chains extending freely into the solvent. Thus,
when the colloidal particles are pushed closely together,
entanglement of polymer chains and attractive van der
Waals interactions can arise and contribute to interparticle
friction.

In two dimensions, φ∞
c is expected to correspond to

the random loose packing fraction, φ ≈ 0.76 [39–41]. The
discrepancy with our fitted value of φ∞

c ≈ 0.84 is therefore
quite reasonable, given the uncertainties associated with the
hydrodynamic radius. In this spirit, the packing fractions
could be corrected from the hydrodynamic derived values by
subtracting ≈0.08.

We next show that analysis of the individual elastic
constants, G and B, allows us to extract the interaction energy.
Previous experiments by Nordstrom et al. [37] suggest that
the particle interaction potential has a Hertzian form, i.e.,
V (rij ) = ε

5/2 (1 − rij /σij )5/2 for overlap of particles i and j ,
and V (rij ) = 0 otherwise. Here, rij is the center-to-center
particle separation, σij is the sum of their radii, and ε sets
the interaction energy scale. In previous work, Somfai et al.
[20] studied the effects of different μ on the elastic moduli
of systems of frictional Hertzian particles in two dimensions.
Here we utilize their simulation results to show that our data
collapse onto a single curve when G/keff is plotted against
�z. The same is true for B/keff. Here, keff =

√
3ε

2σ 2 (p/p0)1/3 for
Hertzian interactions; p = p0(φ − φ

μ
c )3/2, where p0 = 0.135

for frictional particles [21]. Using this form, the numerical data
of Somfai et al. [20] are described by G/keff ≈ 0.34�z∞(1 −
0.09�z∞) and B/keff ≈ 0.28(1 + 0.62�z∞) [24].

In short, with ε as a single fit parameter, we can fit
experimental data to the theoretically expected results for
G/keff and B/keff derived from simulations of Hertzian
particles with friction in two dimensions. Note that these
fits rely on φ∞

c and φ
μ
c , which were determined previously

from the fit to G/B, and so they are fixed in this analysis.
The results are shown in Fig. 3(c); we find ε ≈ 6 ± 1 × 105

kBT . Equivalently, we show G and B versus φ − φ
μ
c in

Fig. 3(d).
Thus far, we have examined our experimental system in

the context of theoretical predictions for disordered packings
at zero temperature. Our particles, however, are thermal with
kBT /ε ≈ 2 × 10−6. This temperature may seem very low, but
recent simulations suggest that thermal effects can dominate
even in this range. For example, it has been suggested that
similar experiments with PNIPAM systems [9,12] have failed
to probe the physics of the jamming transition because kBT /ε

is too high. Specifically, the simulations of Ikeda et al.
[42] on systems with harmonic repulsions suggest that the
scaling behavior of the jamming transition is recovered only
for temperatures lying below kBT �

Ikeda/ε ≈ 10−3(φ − φc)2.
Simulations of Wang and Xu [43] recover jamming scaling

for kBT �
Wang/ε ≈ 0.2(φ − φc)2. Note that the same scaling

with φ − φc is observed by both Ikeda et al. and by Wang
and Xu; this scaling is determined by the form of the
interaction energy. However, the prefactors found by the two
groups differ by roughly a factor of 100. This difference in
prefactors arises because T � is a crossover temperature, not
a transition temperature. As a result, it is not well-defined,
and the value of the prefactor depends on the measure
used.

For systems with Hertzian repulsions, such as ours, one
would expect kBT �/ε ∼ (φ − φc)5/2 with a prefactor that is
similar to the harmonic case [43]. For the lowest packing
fraction studied, φ − φ

μ
c ≈ 0.012, giving kBT �

Ikeda/ε ≈ 1 ×
10−7 and kBT �

Wang/ε ≈ 3 × 10−5, respectively; in this case, our
measured value satisfies T �

Ikeda < T � T �
Wang. Therefore, we

should not recover jamminglike behavior according to Ikeda
et al., but we should be at the border of recovering jamminglike
behavior according to Wang and Xu. The fact that our results
are in quantitative agreement with T = 0 predictions suggests
that the prefactor of Wang and Xu is more consistent with our
experimental observations.

Further evidence that our experiments can be analyzed
in terms of the athermal results is provided by the root-
mean-squared displacement, �r . In particular, we find that
�r is comparable to the estimated particle-particle overlap
at the lowest φ studied, indicating again that this data point
is borderline and is about one order of magnitude smaller
than particle-particle overlap at the highest φ [24]. Thus, our
analysis of the data in terms of the zero-temperature theory
is justified, with the possible exception of the lowest φ data
point.

To conclude, we have employed colloidal suspensions of
temperature-sensitive particles to probe the scaling of the bulk
and shear elastic moduli as a function of packing fraction in
the vicinity of the jamming transition. The observed scaling
behaviors are quantitatively consistent with the predictions of
jamming theory for frictional particles. Our results suggest that
static friction is important, at least in the concentrated PNI-
PAM colloidal packings studied here. In granular materials,
friction is also important, but thermal effects are negligible;
by contrast, for colloidal systems, the interplay of friction
and temperature requires exploration. To date, these types
of systems are typically interpreted using glass theories at
nonzero temperatures without friction or jamming theories
(with or without friction) in the athermal limit. Our findings
suggest that (soft) colloids belong to a sample class wherein
thermal effects and friction effects might need to be considered.
In the future, it should be possible to manipulate and study
such friction effects by changing colloidal particle softness,
size, and interaction, as well as to tune from the athermal
regime, which describes our results well, to the thermal
regime.
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