
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 159.226.35.241

This content was downloaded on 02/07/2015 at 13:43

Please note that terms and conditions apply.

Effective temperature and fluctuation-dissipation theorem in athermal granular systems: A

review

View the table of contents for this issue, or go to the journal homepage for more

2014 Chinese Phys. B 23 074501

(http://iopscience.iop.org/1674-1056/23/7/074501)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1674-1056/23/7
http://iopscience.iop.org/1674-1056
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Chin. Phys. B Vol. 23, No. 7 (2014) 074501

TOPICAL REVIEW — Statistical physics and complex systems

Effective temperature and fluctuation-dissipation theorem in
athermal granular systems: A review*

Chen Qiong(陈 琼) and Hou Mei-Ying(厚美瑛)†

Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China

(Received 6 May 2014; revised manuscript received 29 May 2014; published online 13 June 2014)

The definition and the previous measurements of a dynamics-relevant temperature-like quantity in granular media
are reviewed for slow and fast particle systems. Especially, the validity of the fluctuation-dissipation theorem in such an
athermal system is explored. Experimental evidences for the fluctuation-dissipation theorem relevant effect temperature
support the athermal statistical mechanics, which has been widely explored in recent years by physicists. Difficulties
encountered in defining temperature or establishing thermodynamics or statistical mechanics in non-equilibrium situations
are discussed.
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1. Introduction
It has been an active research area in granular physics

to find whether comparable statistical thermodynamics at the
atomic level exists for the dissipative grain-level fluctuations.
In this paper, we start with a review of temperature in equilib-
rium thermodynamical systems in Section 2, followed by the
introduction of different proposals and experimental evidences
on temperatures in non-equilibrium granular systems of dense
slow moving particles in Section 3, and that of fast moving
particles in Section 4. In the last section, we discuss the chal-
lenges in establishing the athermal statistical mechanics.

2. Temperature in equilibrium thermodynamic
systems
Temperature is one of the fundamental physical quantities

in equilibrium thermodynamics and statistical mechanics.[1] In
equilibrium thermodynamics, the definition of temperature is
supported by two fundamental laws: the zeroth law of thermo-
dynamics, which defines the empirical temperature related to
the transitivity of mutual thermal equilibrium; the second law
of thermodynamics, which relates temperature to heat transfer.
The second law states the continuity and ordering properties,
i.e., the direction of the flow of heat from a high-temperature
object to a low-temperature object, and defines an absolute
thermodynamic temperature independent of the material prop-
erties of the reference used to evaluate it. The standard defini-
tion of the absolute temperature in equilibrium thermodynam-
ics is given by Teq = (∂U/∂S)V,{N}, where U is the internal

energy, S is the entropy, V the volume, and {N} denotes all
numbers of moles.

Statistical mechanics describes the connection between
microscopic properties and collective many-body properties
for systems in thermal equilibrium. In equilibrium statistical
mechanics, the kinetic theory is used to define an absolute tem-
perature as the average translational kinetic energy of the ran-
dom motions of all the particles, where it is often assumed that
it remains valid even in the absence of thermal equilibrium.
The simplest case is non-interacting particles of the ideal gas,
we have 3

2 kBTeq =
〈 1

2 m𝑣2
〉
, where kB is the Boltzmann con-

stant, m is the mass of the particle, 𝑣 is the velocity of the
particles, and the angular brackets denote the average over the
velocity of all the particles.

In a gas at equilibrium, the distribution of the particle ve-
locities must satisfy a statistical distribution function in Gaus-
sian form

feq(𝑣) ∝ exp
(
−1

2
m𝑣2

kBTeq

)
.

Here, we can see that Teq is connected not only to the aver-
age value of the energy, but also to the form of the distribution
function.

In classical equilibrium statistical mechanics, tempera-
ture usually appears as a parameter in equilibrium ensembles,
a measure of fluctuations, or a dynamical quantity. In equilib-
rium ensembles, Boltzmann showed that the energy distribu-
tion function in any system at thermal equilibrium at tempera-
ture Teq has a canonical form feq(E)∝ exp

(
−E/kBTeq

)
, where

E is the energy of the system. In the canonical ensemble, the
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internal energy of the system fluctuates, and the second mo-
ments of the energy fluctuations are related to temperature. To
be able to go from a dynamical description to a thermodynam-
ical one for a classical Hamiltonian system, the system must
exhibit ergodicity, i.e., the dynamical time averages may be
replaced with ensemble averages. The fundamental aspects of
temperature in equilibrium states are related to the atomic level
particle fluctuation and are well defined. Defining the concept
of temperature related to the granular level fluctuations in non-
equilibrium steady or quasi-steady states, however, remains
challenging.

3. Temperature in non-equilibrium dense gran-
ular systems with slowly moving particles
Granular matters,[2–7] foams,[8] and colloids[9–11] are ex-

amples of non-equilibrium model systems. They are consid-
ered as athermal systems because the usual atomic level ther-
mal temperature does not play a role compared with that de-
fined by the granular level fluctuations.[12,13] For example, the
‘kinetic temperature’ corresponding to translation velocities of
1 cm·s−1 of small beads in typical silicate glass is 11 orders of
magnitude higher than room temperature.[1–7] The thermal ki-
netic energy of each particle, kBTeq, is therefore considered
irrelevant compared to the kinetic energy of the grain level. In
such systems, the assembly of particles possesses a large num-
ber of degrees of freedom with energy dissipation through in-
elastic collisions or internal friction, which are, in steady state,
balanced by some non-thermal sources (vibrations, tapping,
shearing, . . . ).[14–21] The validity of the concept temperature
is not guaranteed in such non-equilibrium systems.[22–28] The
thermal energy kBTeq at room temperature is too small to in-
duce any macroscopic grain fluctuations, and the fluctuation-
dissipation theorem is therefore in general not expected to be
valid.

To define temperature of such an athermal system
when one considers only the grain level fluctuations, one
must first compute the system’s entropy. Edwards and
collaborators[29–31] have proposed analogies between dense
granular systems and classical statistical systems. They in-
troduced a method to calculate the entropy (the number of
all possible configurations) for dense, slowly moving (gently
sheared, tapped or vibrated) granular systems. This entropy is
a function of the number of blocked configurations ΩEdw (in
which every grain is unable to move) of given system volume
V and total energy E, as SEdw = kB lnΩEdw (E,V ). Edwards’
entropy is considered strictly in Boltzmann–Gibbs statistics.
All blocked configurations are assigned the same statistical
weight, in analogy to the microcanonical ensemble of clas-
sical systems. Edwards then explored the physical meaning
of the derivatives of the entropy, namely, T−1

Edw = ∂SEdw/∂E,
X−1

Edw = ∂SEdw/∂V , where an Edwards temperature and a

quantity XEdw, called the compactivity, are defined. Although
it is not an easy task to test Edwards’ theory, because experi-
mentally, the rate of energy input and the density are normally
non-uniform, in recent years some efforts in both simulations
and experiments have been made.[24,32–40]

Attempts to test the validity of Edwards’ theory are worth
reviewing here. In 2000 Barrat et al.[32] carried out a numeri-
cal study in some microscopic models, and obtained a dynam-
ical temperature from the diffusion constant and the particle
mobility, following the Einstein relation. The dynamical tem-
perature is found to match well the Edwards temperature ob-
tained from the blocked configurations as shown in Fig. 1.

B↼t↪ tw↽

χ
↼t

↪ 
t w

↽

Fig. 1. Einstein relation in the Kob–Andersen model: plot of the mo-
bility χ(t, tw) vs. the mean square displacement B(t, tw). The slope of
the full straight line corresponds to the equilibrium temperature, and the
dashed one to Edwards’ prescription.[32]

In 2002, Makse and Kurchan[33,34] carried out a numeri-
cal model of a dense, slowly sheared granular system. An ef-
fective temperature is obtained from measuring the diffusivity
and mobility of some trace particles. The temperature is found
to be independent of the shear rate and the tracer particle char-
acteristic features. Its value is found to be consistent with the
Edwards temperature,[35] although the agreement between dy-
namical and Edwards temperatures is not as good when the
rate of energy input through tapping or shearing increases.

Later, Makse et al.[36,37] verified the effective tempera-
ture with experimental measurements of near jamming gran-
ular materials in a slowly sheared three-dimensional Cou-
ette cell with refractive index and density matching fluid (see
Fig. 2(a)). Effective temperatures can be obtained from the
slope of the mean square displacements versus the average dis-
placement of the trace particles shown in Fig. 2(b). The well
overlapped data points provide an evidence that the obtained
temperatures are independent of the slow-shear rate and the
tracer-particle features.

To describe the behavior of diffusivity and mobility, Geng
and Behringer[38] experimented on a dense two-dimensional
(2D) granular system, as seen in Fig. 3. They introduced ran-
dom motion by stirring, and characterized diffusivity by parti-
cle tracking. To obtain the mobility, they measured the force
needed to push a particle through the medium at a fixed veloc-
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Fig. 2. (a) Picture of slowly sheared Couette cell. (b) Effective temperatures for various tracers and different packings. Inset shows
the dependence of Teff on the shear rate in packing 2.[36]
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Fig. 3. (a) Cross-sectional view of the schematic of the apparatus. (b) Typical trajectories of the tracer. (c) Stress image showing force
chain structures. (d) Variance of ∆θ vs. time. Inset shows diffusivities in the radial direction. (e) Mean angular displacement as a
function of observation time.[38]
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Fig. 4. (a) Sketch of the torsion setup in a granular bath. (b) Effective temperature versus vibration intensity Γ . Upper inset: the
effective temperature Teff versus Γ , obtained using cylindrical probes of different diameters with the same immersion depth. Lower
inset: the effective temperature Teff at fixed Γ versus the immersion depth of the oscillator, L, for conical (red) and cylindrical (black)
probes.[39]
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ity. They found that diffusions in the radial direction and the
tangential direction are identical. Both the mean square dis-
placement and the average displacement change linearly with
time.

Other experimental efforts by Mayor et al.[39,40] mea-
sured the motion of a torsion oscillator, which was immersed
in an externally vibrated granular medium of glass spheres.
They observed Brownian-like motions. They found that
an approximate fluctuation-dissipation relation holds, and a
temperature-like quantity, i.e., the effective temperature Teff,
can be defined. The temperature Teff is found to be indepen-
dent of the probe properties, but depends on the area of the
oscillator’s interaction with the granular medium: the more
the oscillator interacts with the granular medium, the higher
the Teff, as is seen in Fig. 4.

4. Temperature in non-equilibrium granular
systems with fast moving particles
Edwards’ theory is for slow moving particles. For

fast moving particles in granular systems that are vigorously
shaken,[41–43] the erratic motion of the particles is similar to
the thermal motion of molecules in a normal gas and therefore
it is possible to introduce the concept of granular temperature
as

3
2

kBTgr =
1
2

m
(
⟨v2⟩−⟨v⟩2) .

When the system receives a high-energy input, it approaches
the behavior of gases,[44] and thus some generalizations of the
Boltzmann equation can be applied to such situations.[45–47]

With a two-layer, vertically vibrated granular system, shown
in Fig. 5(a), in which an oscillating plate drives a horizontal
layer of heavy grains, which in turn drives an overlying hori-
zontal layer of lighter grains, Baxter and Olafsen[48] observed
that, driven by collisions with the first-layer heavy particles,
the velocity distribution of the top layer particles can be Gaus-
sian (Fig. 5(b)). Their system may therefore be ideally suited
to developing a kinetic theory of granular gases.

Inspired by some non-zero temperature gradient thermo-
osmotic trap experiments,[9] we built a non-zero “viscosity”
gradient on the surface of a plate.[49] A granular chain shaken
by vertical vibration bounces on the plate. Directional drift of
the chain from a low viscosity region towards a high viscosity
region is observed. In the system, the motion of this bounc-
ing chain on the unevenly grooved plate is recorded by a high
speed camera. Line-grooves carved on the supporting plate are
denser at the middle and gradually decreasing towards both
ends of the plate. Figure 6 is a sketch of our experimental
setup. This uneven roughness along the chain direction causes
the shaken chain to collide with the supporting plate more fre-
quently at the rough side than that at the smooth end, inducing
a net drift towards the rough center.[49]

g

x↼t↽

v/v0

P
↼v
/
v
0
)

(a)

(b)

Fig. 5. (a) The two-layered experimental setup. (b) Velocity statis-
tics for the first- and the second-layer grains. First layer: crosses, plus
symbols, and asterisks. Second layer: diamonds, squares, circles, and
triangles.[48]

x

Shaker

Fig. 6. Schematic illustration of the setup. Inset is a photo of the gran-
ular chain.

Classical irreversible thermodynamics, based on the
local-equilibrium hypothesis, assumes that the basic thermo-
dynamic concepts do not require a reformulation for non-
equilibrium systems, but that usual equilibrium quantities shall
be locally applied to systems in non-equilibrium states. In our
system, a viscosity gradient exists. We needed to check if the
local-equilibrium hypothesis is valid. We divided the length
of the plate into bins. The width of each bin was chosen to be
small enough so that within each bin the “friction” coefficient
and the instantaneous driving force induced by the viscosity
gradient can be assumed as constants, and at the same time
large enough so that there are sufficient statistical data. The
distribution functions of the displacement, the local instanta-
neous velocities, and the instantaneous accelerations were an-
alyzed and found to be Gaussian. This tells us that the local-
equilibrium hypothesis is valid.

The chain’s motion is similar to a stochastic process that
a viscous friction force and a random force act on the object.
The Langevin equation[50] for a stochastic process driven by
a constant viscous friction force −γv, proportional to the ve-
locity, and a constant random force f , i.e., a Gaussian white
noise, can be written as ẋ = v, and mv̇ = −γv+ f , where f
satisfies ⟨ f (t)⟩ = 0 and ⟨ f (t) f (t ′)⟩ = Cδ(t − t ′). Solving for
v(t), we obtain ⟨v(t)v(t)⟩ = C/2γ . Since 1

2 m⟨v2⟩ = 1
2 kBT ,
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we obtain C = 2γkBT . The mean square displacement can
be calculated once we know x(t). Then, from the Einstein
relation ⟨(x(t + t0)− x(t0))2⟩ = 2Dt, where D is the diffusiv-
ity, the fluctuation-dissipation relation can be easily reached
γD = kBT . In our situation, since the chain particle moves
along a plate with a viscosity gradient, the friction coefficient
γ and the random force f are not independent of position x. In
this case, we can only examine locally the values of γ and D
in each bin.

Since we are only interested in the translational motion of
the chain induced by the “field” gradient, we record only the
position of the center-of-mass of the chain. Both quantities
of the MSD and fluctuation-induced displacement ⟨x(t + t0)−
x(t0)⟩ show good linear dependence on time. From the slopes
of ⟨[x(t + t0)− x(t0)]2⟩ = 2Dt versus ⟨x(t + t0)− x(t0)⟩ = vdt,
we are able to obtain the local D(x) and vd(x) the drift velocity,
respectively.

Figure 7 plots MSD versus ⟨x(t + t0)− x(t0)⟩/F , where
F is the driving force obtained from the average of the in-
stantaneous acceleration, which is assumed to be constant in
each bin. The width of each bin is chosen to be 5 mm so
that it is small enough such that variables driving force F , dif-
fusion coefficient D, and etc. can be assumed as constants,
and the average of the random force f be zero, meanwhile
large enough to contain sufficient statistical data. The lo-
cal effective temperature can then be obtained from the slope
⟨[x(t + t0)− x(t0)]2⟩= 2Teff⟨x(t + t0)− x(t0)⟩/F .
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Fig. 7. Effective temperatures for various positions obtained from a
parametric plot of their diffusion versus mobility. The inset shows the
linear fit.

We compare this effective temperature with the so called
granular temperature defined by the average instantaneous
fluctuation kinetic energy of the chain, i.e., Tg = ⟨|v−⟨v⟩|2⟩ ≈
⟨v2⟩. Figure 8 plots all the measured Tg and Teff under different
experimental conditions. It is found that Teff = Tg, i.e., they are
in good agreement within experimental accuracies.

This fast moving particle experiment provides a one-
variable model system that reflects granular stochasticity with
two temperature-like quantities: one is given by the average
kinetic energy of the grain, the other by the width of the distri-
bution profile around the average kinetic energy. The fact that
the two temperatures are found to have the same values within
experimental accuracies provides an additional support to the
athermal statistical mechanics.
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Fig. 8. Effective temperature versus granular temperature for chains of
different materials (resin, glass, aluminum, iron, and steel).

5. Conclusion and perspectives
Temperatures in non-equilibrium systems are being ex-

amined in recent years in a very active way in systems
such as glasses,[26,51,52] sheared fluids,[53–55] amorphous
semiconductors,[56,57]and turbulent fluids,[58,59] other than
granular materials. It is a great challenge to compare pro-
posals in these different systems and to appraise their mutual
consistency. A good review of temperature in non-equilibrium
situations in different systems, given by Casas-Vázquez and
Jou,[1] provides a good summary with the intention to stimu-
late the connection of different proposals. Despite the success
in recent experimental and simulation works on the consis-
tency of non-equilibrium temperatures, a general overview of
the definitions and problems of non-equilibrium effective tem-
peratures is given in their review.[1] The main difficulty in non-
equilibrium systems is that in equilibrium, all the temperature
definitions lead to the same result, but for non-equilibrium sit-
uations, different definitions, implying different methods of
measurements, may yield different results. In non-equilibrium
systems, the zeroth and the second laws of thermodynamics
are not satisfied, since the definition of temperature from the
former depends on interaction, and the definition from the
latter assumes thermal equilibrium. From the statistical me-
chanics point of view, distribution functions out of equilib-
rium are usually non-Gaussian, and the implications for a non-
equilibrium temperature are unknown.

In this paper, starting from the definitions of tempera-
ture in equilibrium thermodynamics and in equilibrium sta-
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tistical mechanics, we reviewed Edwards’ entropy, which de-
fines temperature and compactivity of non-equilibrium dense
granular systems with slow moving particles. Several simula-
tion and experimental studies have found agreement between
effective temperatures and the Edwards temperature. For fast
moving particles, the concept of granular temperature is of-
ten defined by the average fluctuation of the kinetic energy of
particles. The distribution function of such systems is found
to be reproducible, but often not Gaussian. The forms of the
distribution function depend strongly on the driving methods.
Baxter and Olafsen[48] showed for the first time a Gaussian
velocity distribution of a fast moving granular system with
bulk excitation. Our recent experiment, using a single gran-
ular chain to mimic a stochastic process driven by a viscous
friction force and a random force by bouncing on a vertically
vibrated unevenly grooved plate, showed good agreement be-
tween temperatures obtained from the average kinetic energy
of the grain and from the fluctuation of the average value. The
finding provides a useful experimental support to the athermal
statistical mechanics.

Finally, as pointed out in granular solid hydrodynamics
proposed by Jiang and Liu,[60] we would like to remind our-
selves that the basic laws, such as thermal fluctuations at the
microscopic atomic level (involving the zeroth, the first, or the
second law of thermodynamics, the fluctuation-dissipation re-
lation, the Boltzmann statistical laws, etc.), must be obeyed
by any material including granular systems. There is only one
temperature these laws are related to — the thermal temper-
ature Teq. When we say a granular system is athermal and
try establishing non-equilibrium thermodynamics by defining
a temperature-like quantity, we actually consider only the me-
chanical energy of the grain level, and treat the heat loss (in
phonon level) due to inelastic collision or friction as dissi-
pation. It is convenient, phenomenological, and challenging
to build a non-equilibrium thermodynamic and statistical me-
chanic theory at the grain level in the framework of classical
thermodynamics and/or statistical mechanics. However, we
are not sure if a natural law similar to the classical thermody-
namics exists for such athermal systems, although under spe-
cific conditions, experimental and simulation results as men-
tioned in Sections 3 and 4 support agreements of athermal dy-
namic temperatures of thermodynamics and/or statistical me-
chanics.
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