玻璃橡胶混合颗粒的力学响应研究^{*}

陈琼1) 王青花1)2) 赵闯1)3) 张祺1) 厚美瑛1)†

1)(中国科学院物理研究所,软物质物理重点实验室,北京凝聚态物理国家实验室,北京 100190)

2) (北京理工大学物理学院,北京 100081)

3) (贵州大学理学院,贵阳 550025)

(2015年2月6日收到; 2015年2月27日收到修改稿)

通过直剪实验和离散元模拟,研究掺杂了橡胶软球的玻璃体系的力学响应.改变颗粒固体中橡胶颗粒的 含量,研究体系剪切强度以及剪胀变化等特性,发现随着橡胶颗粒的增加,会出现剪胀到剪缩的相转变现象, 且混合颗粒固体的弹性有了很大的提高.实验研究发现,随着体系中橡胶颗粒含量的增加,剪切屈服强度值 逐渐减小,体积发生从剪胀到剪缩的相转变现象,但临界剪切强度在一定橡胶颗粒含量范围内保持一致;实验 所采取的剪切速率下,应力应变曲线能较好重合,即实验处于率无关区域;混合样品的屈服强度值随正压力的 增大而增大.离散元模拟也得到了上述结果,另外模拟还发现,随着橡胶颗粒含量的增加,颗粒的平均配位数 增大;橡胶颗粒含量和正压力对剪胀-剪缩相转变的位置有影响,橡胶颗粒含量较小时,在较大的正压力下易 发生相转变现象,且剪胀-剪缩相转变点对应的平均配位数在5.6—5.9之间;在橡胶颗粒含量小于30%时,混 合颗粒样品的残剪强度与不掺杂的颗粒体系相近;大于30%时,残剪强度随橡胶颗粒含量的增加而减小;残 剪强度随正压力加大而增加.

关键词:颗粒体系,直剪,混合颗粒,离散元 PACS: 45.70.-n, 83.80.Fg, 83.10.Tv

DOI: 10.7498/aps.64.154502

1引言

颗粒系统是自然界、农业和工业过程中最常见 的系统.时时刻刻都在影响着人类的生存和生活环 境.大量颗粒所组成的离散态体系可以表现出许多 不同于固、液、气体物质的奇特的运动规律.特别 是诸如泥石流、雪崩和山体滑坡等自然灾害本质上 可归属于颗粒体系失稳而导致的类固-液相变过程. 因此对颗粒物质所构成体系力学响应的研究具有 重要的意义.

颗粒系统中,颗粒与颗粒之间由相互挤压形成 的非均匀的力链网络结构决定了颗粒固体所具有 的力学性质^[1].例如在剪切过程中,力链网络的复 杂动力学响应决定了颗粒物质体系的摩擦特性以 及应力-应变关系等宏观性能,若在体系中掺入较 软了颗粒,体系的力链结构发生改变,强力链遭到 破坏,从而影响到整个体系的宏观力学响应.

对于掺杂了橡胶软颗粒的体系的研究,在工程 上已经有很多,最典型的是橡胶沥青混合物^[2]和橡 胶砂粒混合物^[3-5].橡胶颗粒的掺入使得混合物具 有较强的可压缩性、低质量密度、大摩擦角等特性, 改善柔韧性、抗压强度、抗拉强度等力学性质,可制 备出具有特殊性能的混凝土材料,被广泛用于道路 建设和墙体填充等.软硬颗粒的尺寸比和软颗粒的 掺杂比决定了混合物的力学特性^[6].Lee等^[7]在实 验室中研究了小尺寸的橡胶颗粒与大尺寸的砂粒 混合物,发现应变的形变模量是硬颗粒体积比的函 数,体积比的阈值取决于约束应力,且多数情况下

†通信作者. E-mail: mayhou@iphy.ac.cn

© 2015 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金重点项目(批准号: 11034010)、国家自然科学基金(批准号: 11274354, 11474326, 11264006)、地震行业科研经费(批准号: 201208011)和中国科学院空间科学战略性先导科技专项(批准号: XDA04020200)资助的课题.

承担荷载的力链不包括软颗粒,但是软颗粒对维持 荷载链的稳定有作用. Kim和Santamarina对大尺 寸橡胶颗粒与小尺寸砂粒的混合物进行实验和模 拟研究^[8],发现在橡胶含量比较低时砂粒的结构决 定了体系的力学特性,在橡胶含量超过70%时混合 物会出现明显的分聚现象. Lee等^[9]的工作认为摩 擦角和各项异性参数随体系中橡胶颗粒体积比的 增加而减小. 尽管如此,对于这种复杂的、掺杂橡 胶的体系的物理力学性质的认识仍然是不够的. 因 此,进一步探索这种掺杂了橡胶颗粒的体系的宏观 力学特性,研究剪切作用下玻璃与橡胶颗粒混合固 体的力学响应机理不仅具有重要的物理意义,也具 有实际应用的价值.

本文采用直接剪切法和离散元(discrete element method, DEM)模拟方法,研究掺杂了相同大 小的橡胶软球的玻璃体系的力学响应.体系中橡胶 颗粒的添加,改变了只有玻璃颗粒样品时所形成的 力链网络结构,从而改变了混合体系的力学性质. 本文通过改变颗粒固体中橡胶颗粒的含量,对剪切 曲线及剪胀曲线等进行了实验和模拟研究.

2 实验方法与结果

2.1 实验装置

直剪仪是最早用于测试材料抗剪强度的仪器, 具有结构简单、试样要求低、省时、测量范围大、数 据记录直观、操作简单等诸多优点^[10,11].直剪仪系 统的实物图以及截面图如图1所示^[12,13].整个系 统由样品池、直流步进电机、法向压力约束组件以 及应变和应力测量组件构成.

样品池是铝质正方形剪切盒,分为上下盒两 个部分,壁边长均7 cm.剪切开始前两个盒子通 过螺栓锁死保证内壁贴合(实验开始后去掉螺栓). 使用落雨法制备随机密堆积颗粒样品,体积分数 约为64%.样品制备完毕后,将样品池放置于滚珠 导轨上.用水平推杆将下盒与步进电机固连,电 机启动后将推动下盒向前运动,实现剪切过程.实 验中步进电机的推动速度设置为0.6 mm/min和6 mm/min.利用杠杆原理将悬挂物的重力放大一定 倍数(本实验为12倍)通过上盖加载到颗粒样品表 面,实验中正压力为1200 N,900 N和600 N.应力 应变测量组件包括一个测量水平应力的测力传感 器以及测量水平位移和竖直剪胀/剪缩位移的两个 千分表.最大量程1000 N的钢制力学传感器一端 与剪切盒上盒接触另一端与刚体不动点接触,钢制 传感器的杨氏模量远大于颗粒样品可以认为传感 器测力时基本不发生形变.

进行颗粒样晶直剪实验时,不同材料的光洁 度、表面摩擦系数、表面水饱和度、恢复系数和弹性 模量都不尽相同,尤其是实际砂土材料不规则形状 以及颗粒直径分布范围较大会造成严重的颗粒自 锁效应,最终必将强烈的影响材料抗剪强度测试结 果的一致性^[14].为了避免上述这些因素的对结果 的影响本实验主要采用高精度球形钠钙玻璃珠与 橡胶颗粒.另外,当样品盒子尺寸不远大于颗粒直 径时,样品盒子边壁影响较大,为避免出现这种尺 寸效应^[15–17],实验中所使用的玻璃与橡胶颗粒查 径的均为2 mm.为了方便研究不同橡胶颗粒参杂 的影响,我们根据样品中所含的橡胶颗粒数目比重 ξ的改变来进行实验,定义为

$$\xi = \frac{N_{\rm R}}{N} \times 100\%,\tag{1}$$

其中, $N_{\rm R}$ 为橡胶颗粒数目, N 为样品颗粒的总数 目. 很明显, 若玻璃颗粒的比例较大时, 混合物会 显示出玻璃的特性; 若玻璃颗粒的比例较小时, 混 合物会显示出橡胶的特性. 图2给出了理论计算得 到的混合物的质量密度, 混合物的质量密度 $\rho_{\rm mix}$ 是 玻璃的质量密度 $\rho_{\rm g}$ 与橡胶的质量密度 $\rho_{\rm r}$ 之和, 表 示为 $\rho_{\rm mix} = (1 - \xi)\rho_{\rm g} + \xi\rho_{\rm r}$.

2.2 实验结果

对于随机密堆积颗粒直剪实验,剪切过程开始 后在一定的形变范围内,剪切应力会随着形变量的 增大近似线性增加,这与连续固体介质的受剪行为 是相类似的.当形变量积累到一定程度后,这种增 加的趋势开始变缓直至达到峰值,这个值在岩土力 学上被称为峰值剪切强度或是屈服强度.之后随 着剪切位移的增大,剪切应力逐渐释放直至基本不 再变化的状态,这个状态与流体受剪行为类似被称 为临界状态,所对应的剪切应力值被称为残余剪切 强度.

图 3 是正压力 $F_{\rm N} = 1200$ N, 步进电机推进速 度 v = 0.6 mm/min情况下, 橡胶颗粒含量 ξ 分别 为 0, 2%, 4%, 6%, 8% 和 10% 时, 混合颗粒样品的 力学响应曲线. 从图 3 (a) 中可以看出, 随着体系中 橡胶颗粒含量的增大, 颗粒样品的屈服强度值在慢 慢减小, 且同时保持临界状态相同. 从图 3 (b) 中可 以看出, 随着体系中橡胶颗粒含量的增大, 系统出 现由剪胀慢慢变为剪缩的相转变现象. 从力链的 角度来看,由于体系中加入了较软的橡胶颗粒,改 变了样品的力链网络结构,橡胶颗粒的出现导致了 体系中强力链的断裂,即会出现随着橡胶颗粒含量 的增加,颗粒样品在剪切作用下的屈服强度值会慢 慢下降的结果.与此同时,由于橡胶颗粒的含量较 小,橡胶颗粒只是破坏了强力链,对于弱力链影响 不大,甚至是橡胶颗粒才存在还起到了维持弱力链 稳定的作用,使得低掺杂情况下系统的临界状态 相同.

图 3 止压力 1200 N, 橡胶含量为 0%—10% 情况下的 (a) 剪切曲线和 (b) 剪胀曲线 Fig. 3. (a) Shearing and (b) dilatancy curves when

 $F_{\rm N} = 1200$ N and $0\% \leq \xi \leq 10\%$.

颗粒物质的一个特点就是颗粒之间的切向接 触模型是具有历史相关性的,且颗粒物质受到剪切 之后形变也会表现出一定的弛豫作用^[18],因此剪 切速率对实验结果是可能存在一些影响的.为进 一步研究剪切速率在混合颗粒剪切系统中的影响, 我们采用两种不同的步进电机推进速度v = 0.6 mm/min和6 mm/min进行实验,观察屈服强度的 变化. 图4为不同剪切速率、不同混合比例的剪切 曲线和屈服强度变化情况,其中同一橡胶颗粒掺杂 比例下的正压力相同. 从图4(a)可以看出,无论是 橡胶含量是0%还是40%,剪切速率的变化对剪切 屈服强度值无影响. 从图4(b)可以看出,随着样品 中橡胶球含量的增加, 虽然样品的屈服强度值在慢 慢减小, 但屈服强度的大小受剪切速率影响较小. 一般认为, 惯性数 $I = \dot{\gamma} d / \sqrt{P/\rho}$ 小于 10^{-3} 时的流 体运动状态为准静态流体状态, 其中 $\dot{\gamma}$ 为剪切速率, d 为颗粒直径, P 表示颗粒样品到的平均压强, ρ 为 颗粒样品的平均密度^[1]. 在本实验条件下, 惯性数 的最大值为 $I \approx 2.3 \times 10^{-7} \ll 10^{-3}$, 即样品是准静 态流体, 处于率无关的范围之内.

图 4 不同剪切速率下的 (a) 剪切曲线 (b) 屈服强度值随 样品中橡胶球含量的变化

Fig. 4. (a) Shearing curves and (b) the yield strength under different shear rates.

Fig. 5. Shearing curves under different normal forces at $\xi = 20\%$.

图 5 展示了橡胶球含量为ξ = 20%情况下,不同正压力作用时样品剪切力随剪切位移的变化曲线. 从图中可以看出,随着顶部正压力的增大,样品的屈服值会变大.

3 离散元模拟

3.1 模型及参数

晶格排列14×14个颗粒作为DEM模拟剪切 实验的底板和上板,上下板之间立方堆积28层颗 粒为受压颗粒,即总共有14×14×30个颗粒,如 图6所示.模拟过程中,底板固定,上板施加正应力 和剪切速度.按照设定的橡胶颗粒的含量,随机的 将玻璃颗粒替换成橡胶颗粒来实现混合颗粒样品 的制备.*X*,*Y*方向用周期性边界条件,初始状态制 备时忽略颗粒间的摩擦力,*Z*方向在一定的正应力 和重力作用下压到体积分数为64%左右添加摩擦 力,体系平衡之后,沿*X*正方向给上板一定的剪切 速度,来模拟剪切.

图 6 DEM 模拟颗粒样品 (14×14×30, X, Y 方向为周 期边界条件)

Fig. 6. Granular sample in DEM simulation $(14 \times 14 \times 30)$, and periodic boundary at X and Y direction).

DEM 模拟中颗粒间的接触采用 Luding ^[19-22] 所给模型,同时考虑法向、滑动、滚动和扭转接触 模型.法向接触模型为黏弹塑性滞回模型,法向 接触力为 $f^n = f^{hys} + \gamma_n v_n$,其中 f^{hys} 为由重叠量 产生的法向力, γ_n 为法向阻尼, v_n 为两颗粒的法 向相对速度.滑动接触力为 $f^t = -k_t \delta^t - \gamma_t v_t$, k_t 为切向刚度, δ^t 为切向方向弹簧长度矢量, γ_t 为切 向阻尼, vt 为两颗粒切法向相对速度. 滚动接触 力为 $f^{r} = -k_{r}\delta^{r} - \gamma_{r}v_{r}, k_{r}$ 为滚动刚度, δ^{r} 为滚动 弹簧长度矢量, γ_r 为滚动阻尼, v_r 为两颗粒滚动相 对速度. 扭转接触力为 $f^{\circ} = -k_{\circ}\delta^{\circ} - \gamma_{\circ}v_{\circ}, k_{\circ}$ 为 扭转刚度, δ° 为扭转弹簧长度矢量, γ_{\circ} 为扭转阻 尼, vo 为两颗粒扭转相对速度. 模拟中,长度单位 选1 mm、时间单位选1 ms、质量单位选1 mg,参 数选取参考玻璃同时为了提高计算效率略加调整. 设刚度标准 $k = 10^6$ 、阻尼标准 $\gamma = 10^3$,其他涉 及到的刚度和阻尼大小用 k, γ 的比值表示. 玻璃 颗粒参数 $k_1 = 0.4k, k_2 = 0.8k, k_c = 0, \gamma_n = \gamma$, $k_{\rm t} = 0.12k, \ \gamma_{\rm t} = 0.12\gamma, \ k_{\rm r} = 0.1k, \ \gamma_{\rm r} = 0.05\gamma,$ $k_{0} = 0.1k, \gamma_{0} = 0.05\gamma, 橡胶颗粒参数 k_{1} = 0.012k,$ $k_2 = 0.024k, k_c = 0, \gamma_n = 0.3\gamma, k_t = 0.0036k, \gamma_t =$ $0.0036\gamma, k_{\rm r} = 0.003k, \gamma_{\rm r} = 0.0015\gamma, k_{\rm o} = 0.003k,$ $\gamma_{0} = 0.0015\gamma$. 积分步长取 $\Delta t_{MD} = 6 \times 10^{-5}, k_{1},$ k₂, k_c为确定法向接触力的刚度. 根据实际材料密 度, 取玻璃颗粒的密度 $\rho = 2.44$, 橡胶颗粒的密度 为 $\rho = 1.07$.

3.2 模拟结果

DEM 模拟的系统中, 已经验证了率无关效应 以及屈服强度随着正应力的增加而增大的结果^[23], 下面我们就只给出了不同橡胶掺杂情况下的剪切 曲线和剪胀曲线. 当只改变体系中橡胶颗粒含量, 固定其他各参数时, 图 7 为 $F_{\rm N} = 372$ N时, 掺杂比 例为0%—10% 时的剪切曲线和剪胀曲线. 从图中 可以看出, 随着掺杂比的逐渐增大, 混合颗粒固体 的屈服强度值和剪胀位移都逐渐下降 (图 7 (a)), 体 系发生了从剪胀到剪缩的相转变现象 (图 7 (b)).

体系中颗粒的配位数反应了颗粒之间的接触 情况,但在实验条件下获取配位数是十分困难的, 为进一步分析橡胶颗粒的加入对体系的力学性质 的影响,我们在模拟过程中统计了系统中受压层颗 粒的平均配位数.从图8中可以看出,随着橡胶颗 粒含量的增加,颗粒的平均配位数也在增加,也就 是说橡胶颗粒起到了增加体系平均配位数的作用.

实验结果和模拟结果均显示出当保证其他条件不变的情况下,随着体系中橡胶颗粒含量的增加,混合颗粒样品的体积会发生从剪胀到剪缩的相转变现象,且橡胶颗粒有着增加体系平均配位数的作用,因此,下面我们将讨论该相转变与体系中颗粒配位数的关系.很明显,正压力越大,体系压的

越紧,也就是颗粒的平均配位数就越大(见图 10 插 图),在此基础上,模拟结果还发现,剪胀到剪缩的 相转变点的位置不仅与橡胶颗粒含量有关,也与正 压力的大小有关.定义发生相转变时所对应的橡 胶颗粒含量为ξ_c,从图9可以看出,正压力越大,对 应的ξ_c越小,当正压力超过一定值之后,体系就只 存在剪缩现象.进一步的分析发现,不同正压力下, 体系发生剪胀到剪缩相转变处的颗粒平均配位数 均在5.6—5.9之间,见图 10.

图 7 正压力 372 N, 橡胶含量为 0%—10% 情况下的 (a) 剪切曲线和 (b) 剪胀曲线

Fig. 7. a) Shearing and b) dilatancy curves when $F_{\rm N}=372$ N and $0\%\leqslant\xi\leqslant10\%$.

图 8 正压力 372 N, 橡胶含量为 0%—10% 情况下颗粒 的平均配位数

Fig. 8. Coordination number of the system when $F_{\rm N}=372$ N and $0\%\leqslant\xi\leqslant10\%$.

图 10 不同正压力下, ξ_c 所对应的平均配位数, 插图为 $\xi = 0$ 时不同正压力下的平均配位数

Fig. 10. The corresponding coordination number at ξ_c under different normal forces, inset shows the coordination number at $\xi = 0$ under different normal forces.

由于实验中所用实际材料的刚度和阻尼具体 值不确定以及模拟计算的理想化,模拟结果在数值 上不能与实验完全一致,但这并不影响我们对混合 颗粒的力学特性的理解.此外,在模拟过程中发现 橡胶颗粒在体系中所处的位置对混合样品的力学 响应影响较大,橡胶颗粒的位置不同,对体系力链 结构网络的影响就不同,这也间接证明了橡胶软颗 粒对原有力链网络结构具有一定的破坏作用.

4 讨 论

对于样品的剪切曲线,当过了剪切屈服强度值 之后,随着剪切位移的增大,剪切应力会逐渐释放 直至基本不再变化的临界状态,从上述的实验结果 和模拟结果可以看出,掺杂了不同比例的橡胶软球 混合颗粒体系在剪切作用下的临界状态相同,表现 出了更为有趣的力学响应,见图3(a)和图7(a).为 进一步的仔细研究,我们采用DEM模拟的方法,通过给定体系不同的正压力来看临界状态的变化情况.从图7(a)可以看出,在正压力是 $F_N = 372$ N的情况下,橡胶颗粒含量为0%—10%时的剪切曲线临界状态几乎相同,也就是说橡胶颗粒的增加,体系的残余应力并没有明显的变化.但随着正压力的逐渐减小,不同橡胶颗粒掺杂比例下各剪切曲线的临界状态逐渐分开.图11是正压力 $F_N = 53$ N的情况下,橡胶颗粒含量为0%—100%时的剪切曲线.从图中可以看出,在正压力 $F_N = 53$ N的情况下,橡胶颗粒含量为0%—100%时的剪切曲线.从图中可以看出,在正压力 $F_N = 53$ N的情况下,当橡胶含量 $\xi > 30\%$ 时,临界状态明显分开.进一步的研究发现,当正压力超过某一值时,不同橡胶软颗粒的掺杂比对体系临界状态的性质无影响,即混合颗粒体系的临界状态将相同.

图 11 正压力 53 N, 橡胶含量为 0%—100% 情况下的剪 切曲线

Fig. 11. Shearing curves when $F_{\rm N}=53$ N and $0\%\leqslant\xi\leqslant100\%.$

对于橡胶颗粒的加入对体系弹塑性的影响,我 们借鉴土力学的研究方法,对正压力 $F_{\rm N}=372~{
m N}$ 的混合颗粒样品进行循环剪切. 采用 DEM 模拟的 方法,在屈服之前(剪切位移x = 0.5 mm处)、将要 屈服之前 (剪切位移 x = 1 mm 处) 以及达到临界状 态 (剪切位移x = 5 mm 处) 的三个位置进行拉回 和二次推进过程. 由于体系的弹塑性, 剪切力的卸 载路径和二次加载路径不会完全相同,这就形成了 滞回圈,其面积代表了在该剪切位移条件下的能量 损耗,从而进一步可得到该状态下不同掺杂比例的 颗粒材料的弹塑性变化情况. 表1为三个不同拉回 位置下,橡胶颗粒含量为0%—10%情况下的循环 剪切曲线,从表中各图所展示的模拟结果来看,随 着体系橡胶颗粒含量的增加,滞回圈的面积逐渐减 小,也就是能量损耗减小,即混合颗粒样品的塑性 减小,弹性增加.

为更为直观的探究混合颗粒体系弹塑性的 变化,下面我们计算了体系中的能量.对于施 加了相同的正压力,且以相同的剪切速率进行 的模拟,认为体系的总能量是定值*E*,其大小为 体系的动能*E*_k、弹性势能*E*_p和耗散能量*E*_{diss}之 和.根据体系中颗粒的速度可得到体系的总动能 $E_{k} = \sum_{i=1}^{N} \frac{1}{2}m_{i}v_{i}^{2}$,其中*N*为系统中的总颗粒数目, *m_i*为第*i*个颗粒的质量,*v_i*为第*i*个颗粒的速度. 根据体系中的各个压缩重叠量可得到体系的总弹 性势能 $E_{\rm p} = E_{\rm p,t} + E_{\rm p,r} + E_{\rm p,o} + E_{\rm p,n}$,其中切向弹 性势能 $E_{\rm p,t} = \sum_{i=1}^{N} \frac{1}{2} k_{\rm t,i} (\delta_i^{\rm t})^2$,转动弹性势能 $E_{\rm r,t} = \sum_{i=1}^{N} \frac{1}{2} k_{\rm r,i} (\delta_i^{\rm r})^2$,扭转弹性势能 $E_{\rm o,t} = \sum_{i=1}^{N} \frac{1}{2} k_{o,i} (\delta_i^{\rm o})^2$, 法向弹性势能 $E_{\rm n,t} = \sum_{i=1}^{N} \frac{1}{2} k_{\rm n,i} (\delta_i^{\rm n})^2$.图12为正压 力 $F_{\rm N} = 372$ N,橡胶颗粒含量为0%—10%时,体 系的总动能和弹性势能. 很明显, 在该剪切体系中, 橡胶颗粒含量的改变对体系的动能无影响, 体系的 弹性势能随橡胶颗粒含量的增加而增大, 且混合颗 粒体系的动能的远小于弹性势能. 图 13 为正压力 $F_{\rm N} = 372$ N, 橡胶颗粒含量为0%—10%时, 体系 耗散的能量随剪切位移的变化曲线, 能够更清楚的 看到橡胶颗粒的加入对体系弹塑性的影响. 从图中 可以看出, 随着橡胶颗粒含量的增加, 体系耗散的 能量逐渐减小, 因此, 可以说橡胶软颗粒的加入降 低了混合颗粒体系的塑性, 提高了弹性.

图 12 正压力 372 N, 橡胶含量为 0%—10% 情况下, 动 能和弹性势能随剪切位移变化曲线

Fig. 12. Kinetic energy and elastic potential energy verse shear displacement when $F_{\rm N}=372$ N and $0\%\leqslant\xi\leqslant10\%$.

图 13 正压力 372 N, 橡胶含量为 0%—10% 情况下, 耗 散能量随剪切位移变化曲线

Fig. 13. Energy dissipation verse shear displacement when $F_{\rm N}=372$ N and $0\%\leqslant\xi\leqslant10\%$.

5 结 论

本文采用直接剪切的实验方法和离散元模拟的方法,研究了掺杂了橡胶软球的玻璃体系的力学

响应. 体系中橡胶颗粒的添加破坏了原有的力链网 络结构,从而引起了混合颗粒固体宏观力学响应的 变化. 通过实验和模拟结果可以看出, 随着体系橡 胶颗粒含量的增加,混合样品的屈服强度值逐渐减 小,体系出现从剪胀到剪缩的相转变现象,在此过 程中体系中颗粒的平均配位数逐渐增大:不同剪切 速度对剪切屈服强度值无影响;样品屈服值和颗粒 的平均配位数会随着正压力的增加而增大:发生剪 胀-剪缩相转变时,正压力越大,所对应的橡胶颗粒 含量越小;不同正压力下,发生剪胀-剪缩相转变时 的颗粒平均配位数均处于5.6—5.9之间. 当正压力 较小时,不同橡胶含量的样品剪切曲线的临界状态 不同; 当正压力较大时, 临界状态相同. 从实验和 模拟结果来看,正压力一定时,增加体系中橡胶颗 粒的含量可以增加混合颗粒固体的弹性,改善其柔 韧性. 该研究有利于人们对力链在颗粒体系中的 作用有更为直观的了解,且软颗粒对材料抗剪强度 和弹塑性的影响对实际应用有着一定的理论指导 作用.

参考文献

- Sun Q C, Wang G Q 2009 Introduction to Granular Material Mechanics (Beijing: Science Press) p73 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论 (北京: 科学 出版社) 第 73 页]
- [2] Specht L P, Khatchatourian O, Brito L A T, Ceratti J A P 2007 Materials Research 10 69
- [3] Zornberg J G, Cabral A R, Virajandr C 2004 Canadian Geotichnical Journal 41 227
- [4] Valdes J R, Evans T M 2008 Canadian Geotechnical Jouirnal 45 588
- [5] Feng Z Y, Sutter K G 2000 Geotechnical Testing Journal 23 338
- [6] Lee Changho, Truong Q H, Lee W, Lee J S 2010 Journal of Materials in Civil Engineering 22 323
- [7] Lee J S, Dodds J, Santamarina J C 2007 Journal of Materials in Civil Engineering 19 197
- [8] Kim H K, Santamarina J C 2008 Canadian Geotechnical Jouirnal 45 1457
- [9] Lee C, Shin H, Lee J S 2014 International Journal for Numerical and Analytical Methods in Geomechanics 38 1651
- [10] Khidas Y, Jia X 2012 Physical Review E 85 051302
- [11] Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 *Physical Review E* 85 031306
- [12] Zhang Q 2012 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese) [张祺 2012 博士学位论文 (武汉: 武汉大学)]

- [13] Zhang Q, Li Y C, Liu R, Jiang Y M, Hou M Y 2012 Acta Phys. Sin. 61 234501 (in Chinese) [张祺, 厚美瑛 2012 物 理学报 61 234501]
- [14] Sezer A, Altun S, Goktepe B A 2011 Soils and Foundations 51 857
- [15] Zhang Q, Hou M Y 2012 Acta Phys. Sin. 61 244504 (in Chinese) [张祺, 厚美瑛 2012 物理学报 61 244504]
- [16] Wang J, Gutierrez M 2010 Geotechnique 60 395
- [17] Liu H T, Cheng X H 2009 Rock and Soil Mechanics 30 287 (in Chinese) [刘海涛, 程晓辉 2009 岩土力学 30 287]

- Brujić J, Wang P, Song C M, Johnson D, Sindt O, Makse
 H 2005 *Physical Review Letters* 95 128001
- [19] Luding S 2008 Granular Matter 10 235
- [20] Luding S 2004 International Journal of Solids and Structures 41 5821
- [21] Luding S 2005 Journal of the Mechanics and Physics of Solids 53 455
- [22] Luding S 2005 Powder Technology 158 45
- [23] Zhao C, Hou M Y, Hu L 2014 Chinese Journal of Computational Mechanics????? [赵闯, 厚美瑛, 胡林 2014 计 算力学学报增刊????]

Mechanical response study of glass-rubber particle mixtures^{*}

Chen Qiong¹) Wang Qing-Hua¹)²) Zhao Chuang¹)³ Zhang Qi¹ Hou Mei-Ying¹[†]

 (Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

2) (Department of Physics, Beijing Institute of Technology, Beijing 100081, China)

3) (Science School, Guizhou University, Guiyang 550025, China)

(Received 6 February 2015; revised manuscript received 27 February 2015)

Abstract

Mechanical response of mixtures composed of glass and rubber particles are investigated in direct shear experiments in laboratory and by means of discrete element method simulations. The mixtures are prepared with different contents of rubber fractions. It is found that, with increasing rubber particles, volume phase transition occurs from dilatancy to reduction, and the elastic properties of the mixtures are improved. Experimental results show that, as the rubber particles (up to 30% in volume) are added, the value of the shear stress falls, and the volume phase transition occurs, but the critical states are the same. The shear stress is independent of shear rates, however, it grows with the normal force. We have obtained the consistent results in the simulation. Furthermore, statistical analysis of the simulation results shows that the average coordination number is raised with the increase of rubber particles. Volume phase transition occurs at low rubber fraction when the normal force is large. It is very important to keep in mind that the average coordination number is always between 5.6 and 5.9 at the phase transition points even under different normal forces. When the rubber fraction is less than 30%, the residual shear strength is nearly the same as in the system of glass beads. However, the residual shear strength decreases when the rubber particles increase to the fraction larger than 30%. Meanwhile, the residual shear strength increases with the normal pressure.

Keywords:granular systems, direct shear, granular mixtures, discrete element methodPACS:45.70.-n, 83.80.Fg, 83.10.TvDOI:10.7498/aps.64.154502

^{*} Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11034010), the National Natural Science Foundation of China (Grant Nos. 11274354, 11474326, 11264006), the Special Fund for Earthquake Research of China (Grant No. 201208011), and the "Strategic Priority Research Program-SJ-10" of the Chinese Academy of Sciences (Grant No. XDA04020200).

[†] Corresponding author. E-mail: mayhou@iphy.ac.cn