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Using video microscopy and particle-tracking techniques developed for dense Brownian systems of
polygons, we study the structure-dynamics relationship in a near-equilibrium 2D glass consisting of
anisotropic Penrose kite-shaped colloids. Detailed vibrational properties of kite glasses, both translational
and rotational, are obtained using covariance matrix techniques. Different from other colloidal glasses of
spheres and ellipsoids, the vibrational modes of kite glasses at low frequencies show a strong translational
character with spatially localized rotational modes and extended translational modes. Low-frequency
quasilocalized soft modes commonly found in sphere glasses are absent in the translational phononmodes of
kite glasses. Soft modes are observed predominantly in the rotational vibrations and correlate well with the
spatial distribution ofDebye-Waller factors. The local structural entropy field shows a strong correlationwith
the observed dynamic heterogeneity.
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Introduction.—The exact nature of glassy materials
and the glass transition is a long-standing unsolved
problem in condensed matter physics [1]. In glass-forming
molecular liquids or dispersions of hard colloids, through
fast quenching processes, such as rapidly cooling or
osmotically compressing, low-frequency mechanical relax-
ations become increasingly slow and are accompanied by
dynamic heterogeneity in the motion of the constituent
molecules [2–7]. The various possible origins of dynamic
heterogeneity in different types of glassy materials have
been hotly debated for the past three decades.
Dynamic heterogeneity has been connected to particle

configurations [8,9], but it is not significantly correlated
with local structural parameters such as geometrical free
volume [10] and local composition [11]. Considering that
dynamic heterogeneity reflects the cooperative collective
motion of particles in a glass, it is conceivable that a search
for a nonlocal structural parameter may provide a better
correlation between dynamic heterogeneity and structures.
Low-frequency quasilocalized soft modes reflect collective
excitations of particles in a potential energy landscape and
have been successfully used to predict dynamic hetero-
geneity in quenched glasses of colloidal spheres [12,13].
However, a static structural parameter is still needed in
order to directly link dynamics and structure in real space.
Soft spots in glasses, defined by soft modes, are found to
overlap with rearranging regions in glasses [13–15], but
they typically show no qualitative differences in structure

when compared to the background [15]. So, finding a
suitable structural parameter remains quite challenging.
Several parameters, such as the bond orientational order
parameter and the local structural entropy (or the two-body
translational correlation contribution to the excess entropy)
S2 [16,17], have been shown to be good structural indica-
tors for predicting dynamic heterogeneity but only in
specific systems [18–20].
All of the above work has focused on quenched colloidal

glasses formed by spheres or disks. By contrast, the
correlation between dynamics and structures in glass
systems of hard anisotropic (i.e., nonspherical or non-
diskotic) colloids has remained largely unexplored.
Recently, in a 2D glass system of monodisperse prolate
ellipsoids, the structural signatures for both translational
and rotational dynamics have been shown [21], and S2
performed as a reasonable static structural parameter linked
to dynamic heterogeneity [22]. In contrast to this quenched
ellipsoid glass, Zhao and Mason observed a 2D glass in a
system of monodisperse hard kite platelets formed under a
quasistatic near-equilibrium manner (i.e., very slow crowd-
ing) [23]. Each Penrose kite has fore-aft asymmetry and a
well-defined pointing direction, not just an axis, leading to
a larger number of distinguishably different local configu-
rations compared to ellipsoids. Moreover, in this kite glass,
no local liquid crystal ordering was observed, which is very
different than the nematiclike glassy clusters observed in
the ellipsoid glass. Also, regarding diffusive dynamics of an
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isolated particle, by contrast to a highly prolate ellipsoid
[24], an isolated prismatic kite in a dilute noninteracting
fluid does not show obvious anisotropic translational
diffusion in the plane (i.e., there is essentially no detectable
difference between an isolated kite diffusing along or
diffusing perpendicular to its symmetry axis [25]). In the
fluid state at higher ϕA ¼ 0.35, there is still no apparent
anisotropic translational diffusion. These differences raise
interesting questions about which structural parameters
can be used to predict dynamic heterogeneity in the kite
glass. Particularly, the relative contributions of translational
motion and rotational motion to the glassy dynamics,
including dynamic heterogeneity, have not been previously
predicted or observed for such systems containing aniso-
tropic glass-forming shapes that have been slowly crowded.
In this Letter, we investigate the relationship between

structure and dynamics in a 2D colloidal Penrose kite
glass at different area fractions ϕA. From experimentally
obtained microscopic movies of this Brownian system, we
perform customized video tracking of positions and ori-
entations of many kites in the field of view over time. Based
on these experimental results, we then calculate the
intrinsic vibrational modes of the kite glass at different
ϕA using replica undamped shadow kite systems. Soft
modes are found only in the rotational vibrational modes.
We also report participation fractions and participation
ratios as a function of frequency ω for both translational
and rotational modes. Our results demonstrate a strong
spatial correlation between localized vibrational structure,
static structure characterized by S2, and dynamic hetero-
geneity characterized by Debye-Waller factors (DWFs).
The kite glass is composed of monodisperse colloidal

Penrose kites that are four-sided polygonal platelets,
each having three 72° and one 144° internal angles with
two long edges of 2.9 μm, two short edges of 1.8 μm, and a
thickness of 1.4 μm (see Fig. S1 in Ref. [25] for a
microscopic image of a kite); the methods of lithographi-
cally mass producing these kites out of a polymeric
photoresist, dispersing them in an aqueous solution, and
slowly crowding them in a 2D monolayer while preserving
near-hard in-plane interactions using roughness-controlled
depletion attractions has been previously reported [23].
To measure the vibrational characteristics of the kite

glass, we employ covariance matrix techniques [26–29] to
particle-tracking data that we extract from movies of dense
systems of kites at different particle area fractions ϕA,
obtained using optical microscopy. Data were collected for
about 260 sec with a total of ∼3200 frames, which is higher
than the total number of degrees of freedom, 3N ∼ 1200
(N ∼ 400, the number of kites in the field of view). No cage
rearrangements occurred in the chosen field of view during
the selected time window. From the movies, both the
centers and vertices of all kites in successive video frames
are determined and analyzed using user-written interactive
data language routines [23]. The uncertainty in a spatial
coordinate of the center of a single kite is estimated to be

about �60 nm, and the uncertainty in the orientation of a
kite found by our center and vertex detection methods is
about �5° [23]. Based on these data, we define uðtÞ as the
3N-component vector of displacements of N particles from
their time-averaged positions and time-averaged orienta-
tions, uðtÞ¼ ½xkðtÞ−hxki;ykðtÞ−hyki;θkðtÞ−hθki�, where
the index k runs from 1; ...; N. The system’s covariance
matrix at time t is defined as CijðtÞ ¼ huiðtÞujðtÞi, where
indices i, j ¼ 1;…; 3N run over all particles andcoordinates,
including both the position and orientation, and hi indicates
averaging over time. In the harmonic approximation,
C is directly related to the stiffness matrix K by Cij ¼
kBTðK−1Þij [26,29]. Then the dynamical matrix can be
calculated as Dij¼Kij=mij, where mij¼ ffiffiffiffiffiffiffiffiffiffiffimimj

p and mi is
themass (for translational degrees of freedom)or themoment
of inertia (for rotational degrees of freedom) of kite i.
The eigenvectors and eigenvalues of the dynamical matrix
correspond to the amplitudes and frequencies of correspond-
ing vibrational modes, respectively. The covariance method
describes a “shadow” system which has the same geometric
configurations and interparticle potential but without damp-
ing as in experimental colloidal systems [30].
Figure 1 shows the displacement vector of three typical

eigenmodes of the kite glass (ϕA ¼ 0.60) at selected
frequencies. By contrast to earlier studies on sphere [29]
or ellipsoid glasses [26] in which the low-frequency
eigenmodes are quasilocalized, in the kite glass, transla-
tional displacements at the selected low ω are not localized
but instead exhibit wavelike [31] features. As a conse-
quence of crowding, the rotational displacements of most
kites have small magnitudes. At intermediate ω, the
eigenmodes reveal an apparent, disordered displacement
distributions both in translation and in rotation, indicating a
mixed character of translation and rotation. At the selected
high ω, both translational and rotational displacements are
localized, similar to other colloidal glasses [26,29].
The obtained vibrational density of states DðωÞ of the

kite glass is shown in Fig. 2(a). The slope of theDðωÞ curve
at low frequencies decreases as ϕA decreases, indicating
that low-ω modes increase as the system approaches to the
glass transition point ϕg from above (i.e., ϕA > ϕg, ϕg is
∼0.58 in the kite system [23]). Similar behavior has been
reported in granular jamming [32]. For two-dimensional
crystals, the asymptotic low-ω density of states obeys the
Debye relation DðωÞ ∼ ω. By contrast, the measured
DðωÞ=ω in the kite glass is not flat but has extra low-
frequency vibrational modes. This is consistent to obser-
vations in other colloidal glass systems [29,33].
To further evaluate the contributions of translation and

rotation to vibrational modes, the translational and rota-
tional participation fractions Ptran

F and Prot
F , respectively, are

calculated by Ptran
F ðωÞ¼P

i½e2ixðωÞþe2iyðωÞ� and Prot
F ðωÞ ¼

1 − Ptran
F ðωÞ ¼ P

ie
2
iθðωÞ; here eigenvectors of each mode

are normalized such that
P

i½e2ixðωÞþe2iyðωÞþe2iθðωÞ�¼1,
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and i runs over all particles. The results are shown in Fig. 2(c).
Ptran
F is higher thanProt

F at both lowandhigh frequencies for all
tested ϕA, indicating a primarily translational character at
those frequencies. This observation is quite different from the
results of ellipsoids, where the low-frequency regime is
dominated either by rotational modes shown in a near-
jammed system of ellipsoids or by a mix of translational
and rotational modes shown in a glass of polydisperse
ellipsoids [26,34,35]. In our kite glasses, Prot

F becomes
comparable to Ptran

F (which means a strong mixed character
of translation and rotation) only in a narrow intermediate
frequency range (4.6×104 rad=s<ω<7.7×104 rad=s).

To characterize the degree of localization of transla-
tion and rotation in each mode, both translational and
rotational participation ratios are calculated by Ptran

R ðωÞ ¼
fPi½e2ixðωÞ þ e2iyðωÞ�g2=fN

P
i½e2ixðωÞ þ e2iyðωÞ�2g and

Prot
R ðωÞ¼½Pie

2
iθðωÞ�2=½N

P
ie

4
iθðωÞ�. Thus, Ptran

R ðor Prot
R Þ ∼

1=N for a strongly localized translational (or rotational)
motion and Ptran

R ðor Prot
R Þ ∼Oð1Þ for an extended motion.

In glassy [26,36,37] spheres, the participation ratio (PR)
drops from ∼0.5 to below 0.2 at low frequencies. This low-
ω quasilocalized character is an important feature in
glass, as it is related to the spatial dynamic heterogeneity
[12,38]. By contrast, in the kite glass, Ptran

R does not drop

FIG. 2. (a) DðωÞ, (b) DðωÞ=ω, (c) Ptran
F (solid symbol, upper curve) and Prot

F (open symbol, lower curve), and (d) Ptran
R (solid symbol,

upper curve) and Prot
R (open symbol, lower curve) vs ω at different ϕA. (a) and (b) are bin averaged with a bin size of 30 consecutive

vibrational modes.

FIG. 1. Typical eigenmodes at (a) small (ω ¼ 3.2 × 103 rad=s), (b) intermediate (ω ¼ 5.0 × 104 rad=s), and (c) large frequencies
(ω ¼ 2.6 × 105 rad=s). For each particle, the pointing direction of the black arrow head shows the direction of translational
displacement, and the size of the arrow head scales with the magnitude of translational displacement; the color intensity scales with the
magnitude of rotational displacement (in rad) with red for counterclockwise rotation and blue for clockwise rotation.
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much at low frequencies (i.e., nonlocalized) [Fig. 2(d)],
which is consistent with the wavelike pattern of transla-
tional displacement of kites displayed at low ω (Fig. 1).
This participation ratio difference at the low ω also agrees
with the observation that the maximum values of transla-
tional non-Gaussian parameters αT;max

2 are much smaller in
the kite glass (∼0.18 at ϕA ¼ 0.59; see Fig. S6E in
Ref. [23]) than that in an ellipsoid glass (αmax

2 ∼ 2 in a
glass state with volume fraction ∼0.81, which just passes
the glass transition point ∼0.79) [21], since a lower
participation ratio at low ω correlates to a spatial dynamic
heterogeneity which then leads to a higher αT;max

2 . We then
look for a possible structural origin for the observations by
examining the local polymorphic configurations (LPCs)
of kites in the glass, which was proposed in Ref. [23].
A quantitative measurement shows that each polymorph
has roughly the same probability of appearance in the kite
glass, although the one that can form a crystal is slightly
higher (see Figs. S2–S4 in Ref. [25] for details). This
suggests that in terms of excitation energy those different
LPCs are more or less equivalent, so the whole system has
few unique local configurations that can be differentiated
from the rest of the system. This is unlike other colloidal
glasses, in which dynamic heterogeneity is correlated to
some local order structures (for instance, local structures
having bond orientational order) in a disordered back-
ground [19,39]. In other words, the kite glass formed
through the competition of those LPCs is uniformly
disordered and has few structural soft spots to facilitate
localized translational motion at low frequencies; thus,
αT;max
2 is small and the translational motion is not localized

at low ω. The rotational motion in the kite glass, on the
other hand, is localized at low ω, as indicated by small Prot

R
at low ω shown in Fig. 2(d). This agrees with the
observation in Fig. 1 that there are only a few spotted
kites with deep red or blue colors. This is also consistent
with the result that the maximum value of rotational non-
Gaussian parameters αR;max

2 (∼0.67 at ϕA ¼ 0.59) is larger
than the corresponding αT;max

2 (∼0.18 at ϕA ¼ 0.59),
which was reported in Ref. [23]. The vibrational properties
of a supercooled liquid state of kites at ϕA ¼ 0.57 has also
been characterized (see Fig. S5 in Ref. [25]), and the
results indicate not-localized translational motion and
localized rotational motion at a low frequency, similar
to kites in the glass state.
The low-ω quasilocalized soft modes have been

shown to be related to spatial dynamic heterogeneity
in isotropic colloidal glasses [12,38]. To check this
correlation in the kite glass, for rotation, we choose
the low-ω modes with Prot

R < 0.1 as rotational soft modes,
which includes 20 modes. For translation, because trans-
lation in the kite glass is not localized at the low-ω
region, we then just choose the 20 lowest-frequency
modes. The translational (ptran

i ) and rotational (prot
i )

participation fractions [26,38,40] of kite i in these chosen
modes are calculated as

ptran
i ¼ 1

NSM

X
tran20

½e2ixðωÞ þ e2iyðωÞ�; ð1Þ

prot
i ¼ 1

NSM

X
rotsoft

e2iθðωÞ; ð2Þ

where NSM is the number of chosen modes. The dynamics
of the kite system are characterized by DWF, which has
been shown to be a good parameter for predicting both the
long- and short-time dynamic heterogeneity [41]. For each
kite i, both the local translational DWF (TDWF) and the
local rotational DWF (RDWF) are measured, which are
defined as the mean-squared deviation of a particle from its
averaged position and orientation, respectively. TDWFi ¼
hðhrii − riðtÞÞ2i and RDWFi ¼ hðhθii − θiðtÞÞ2i, where
riðtÞ and θiðtÞ are the position and orientation, respectively,
of particle i at time t and hi refers to time averaging over a
short time corresponding to the middle of the plateau
region in the mean-squared (angular) displacement. The
results show that the spatial patterns of chosen modes
match well with the spatial distribution of local DWF in
both translation and rotation (Figs. 3 and S6). Spearman’s
rank-order correlation coefficient [42,43] is calculated to
qualitatively evaluate the correlations (see [25] for details),
and the results show that the correlation is 0.88, 0.88, and
0.89 between ptran and TDWF and is 0.89, 0.85, and 0.81
between prot and RDWF for samples of ϕA ¼ 0.59, 0.60,
and 0.61, respectively. The high correlation values suggest
that the soft mode is a good thermodynamic parameter to
correlate spatially with dynamic heterogeneity.
To further search for a structural parameter that can be

used to predict dynamic heterogeneity, the bond orienta-
tional order parameter Ψ 6ðriÞ ¼ N−1

i

PNi
j¼1 e

i6θij and local

orientational order parameter ϕ2 ¼
PNi

j¼1 cosð2ΔθjÞ=Ni

FIG. 3. Maps of kites displaying (a) ptran of the 20 lowest-ω
modes and (c) prot of soft modes and (b) TDWF and (d) RDWF
for samples at ϕA ¼ 0.60. The color intensity scales with the
amplitude of the participation fraction of chosen modes or DWFs.
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[25] are tested, whereNi is the number of nearest neighbors
defined by Voronoi construction of particle i, θij is the
angle between an arbitrary reference axis and the line
connecting the centers of particle i and its nearest neighbor
j, and Δθj is the orientational angle difference between
the particle i and its nearest neighbor j. The correlation
between Ψ 6 and TDWF is 0.07, 0.03, and −0.01 and that
between ϕ2 and RDWF is −0.13, −0.02, and 0.03 for
samples with ϕA ¼ 0.59, 0.60, and 0.61, respectively. Both
parameters show no correlation with the dynamics in the
kite glass. The structural entropy S2 measures the entropy
loss due to positional or orientational correlation which can
be obtained from the two-body correlation degree of the
local structures. The translational and rotational S2 of kite i
are calculated, respectively, as [22,44]

Stran2;i ¼ −πkBρ
Z∞

0

½giðrÞ ln giðrÞ − giðrÞ þ 1�rdr; ð3Þ

Srot2;i ¼ − 1

2
kBρ

Z∞

0

giðrÞrdr
Z2π

0

giðθjrÞ ln½giðθjrÞ�dθ; ð4Þ

where kB is Boltzmann’s constant, ρ is the number
density, giðrÞ is the radial distribution function of centers
of mass relative to particle i, and giðθjrÞ is the orienta-
tional distribution function of the angular difference
between the pointing direction of particle i and the
particle at center-of-mass distance r. To compare with
the dynamics, we overlay the particles with the top 10%
largest DWF (i.e., the top 10% fastest particles) on the
contour of S2 (Figs. 4 and S7 [25]). The results show that
most of the selected particles fall into the regions having
high S2 for both translation and rotation. The correlation
is 0.32, 0.34, and 0.34 between Stran2 and TDWF and 0.70,
0.56, and 0.47 between Srot2 and RDWF for samples of
ϕA ¼ 0.59, 0.60, and 0.61, respectively. So we find that
S2 exhibits a good correlation with dynamics in both
translation and rotation in the kite glass, although the
correlation between Stran2 and TDWF is lower than that
between Srot2 and RDWF, which is likely due to the subtle
dynamic heterogeneity associated with translation.

In other glass systems, local S2 has been shown to be
linked to dynamics. Tanaka’s group [18,19] simulated hard
sphere glass systems and found the slow dynamics are
linked to lower S2. Zheng et al. [22] showed that the slow
dynamics are linked to lower S2 in both translation and
rotation in a colloidal ellipsoid glass system. In those
systems, however, the regions identified as domains of the
dynamic heterogeneity often show a certain order such asΨ 6

[39] or nematic order [22], althoughvery locally. By contrast,
in the kite glass, the system is frustrated bymanyLPCswhich
compete with each other. Those LPCs have different sym-
metries and structures, which suppress any order in the
system even locally. Among the polymorphs, sixfold sym-
metry or orientationally aligned structures are not particu-
larly favored. Thus,Ψ 6 andϕ2 show near zero correlations to
local dynamics. However, S2 seems to correlate with the
dynamics in the kite glass to a substantial extent, implying a
certain degree of generality of S2 in predicting the dynamic
heterogeneity in different glass systems.
In conclusion, we have examined the vibrational proper-

ties of the kite glass using covariance matrix techniques.
Different from other previously investigated colloidal
glasses formed by spheres or ellipsoids, in the low-ω
regime, the vibrational modes of the kite glass are domi-
nantly translational in character. The low-ω rotational
modes are truly localized; however, the low-ω translational
modes are extended with a crystal-level-like PR, and the
corresponding translational displacements exhibit wavelike
features. One possible structural cause for the observed low-
ω vibrational properties is due to the extreme diversity of
incommensurate LPCs that occupy similar area fractions in
the kite glass, which makes the kite glass more structurally
disordered to smaller length scales, as compared to other
colloidal glasses that have a significant population of locally
ordered structures in a disordered background that can occur
through a rapid quenching process. The pattern of the
obtained soft modes (20 lowest ω modes for translation)
matches well with the spatial distribution of DWFs both
translationally and rotationally. Among the tested structural
parameters, S2 shows a good correlation with the distribu-
tion of particle dynamics, butΨ 6 andϕ2 do not. These results
indicate that such soft modes typify a near-thermodynamic
structure, and the local structural entropy that characterizes a
static structure is a useful parameter that is well correlated
with local particle dynamics. Our findings shed new light on
the origin of heterogeneous dynamics in 2D glassy systems
consisting of anisotropic particles formed through slow
crowding rather than rapid quenching.
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FIG. 4. Spatial distribution of S2 and selected particles with the
largest DWFs. Contour plots, (a) local Stran2 and (b) local Srot2 ;
squares, positions of selected particles (top 10% largest TDWF);
and circles, positions of selected particles (top 10% largest
RDWF) for ϕA ¼ 0.60.
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