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Emergence and percolation of rigid domains during the colloidal glass transition
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Using video microscopy, we measure local spatial constraints in disordered binary colloidal samples, ranging
from dilute fluids to jammed glasses, and probe their spatial and temporal correlations to local dynamics during
the glass transition. We observe the emergence of significant correlations between constraints and local dynamics
within the Lindemann criterion, which coincides with the onset of glassy dynamics in supercooled liquids. Rigid
domains in fluids are identified based on local constraints and demonstrate a percolation transition near the
glass transition, accompanied by the emergence of dynamical heterogeneities. Our results show that spatial
constraint instead of the geometry of amorphous structures is the key that connects the complex spatial-temporal
correlations in disordered materials.
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A liquid solidifies when sufficiently cooled. Under near-
equilibrium conditions, crystals form, with distinctively dif-
ferent structures and mechanical properties than those of the
liquid phase. When rapidly quenched, on the other hand, a
supercooled liquid undergoes glass transition and becomes
an amorphous solid with apparently disordered structures.
For the glass transitions, two fundamental questions remain.
The first one is “when does a supercooled liquid qualitatively
transform into a solid during the glass transition?’. Glasses
obviously fit our experiences with solids. Experimentally,
however, there is no definitive point of solidification, despite
more than 10 orders of magnitude increase in viscosity during
the glass transition. The other question is “what structural
orders, if any, are associated with the unusual dynamical phe-
nomena and the rise of rigidity during the glass transition?”
Many studies attempt to construct structural parameters based
on local geometry to distinguish slow rigid domains from
more mobile fluid regions in glasses [1–5], but have yet to
find any universal signatures.

In condensed matters, particularly in solids, the role of the
structure is to confine the motion of atoms, thus to maintain
rigidity. From this point of view, a solid loses its rigidity when
the motions of consisting atoms can no longer be adequately
constrained. A perfect example is the Lindemann criterion for
the melting of crystals, which is found to be accurate in almost
all crystalline materials [6,7]. A crystal melts when the vibra-
tional fluctuations of atoms reach the order of one tenth of the
lattice constant. The Lindemann criterion is independent of

*These authors contributed equally to this work.
†whw@iphy.ac.cn
‡kechen@iphy.ac.cn

the symmetry of the underlying structures of the solids, thus
may be employed to determine the liquid-solid transition in
glass-forming materials [8–20]. In metastable structures, the
vibrational fluctuations of atoms are primarily determined by
local structures, thus the confinement experienced by individ-
ual particles can be employed as a structural parameter when
the geometry is too intricate to analyze.

In this paper, we employ the local Debye-Waller factor to
measure the local constraints in colloidal liquids and glasses,
and investigate its correlations to local dynamics during the
glass transition. Temporal correlations between particle con-
straints and local dynamics reveal the emergence of structural
relaxation barriers that give rise to finite rigidity in the system
as the temperature decreases. A common Lindemann-like
length scale is identified by measuring the configurational
changes when the system overcomes the relaxation barriers
and starts behaving like fluids. The rise of rigidity and the
onset of glassy dynamics are both shown to coincide with
the percolation of rigid domains identified by the Lindemann-
like length scale. Dynamical heterogeneity increases sharply
when rigid domains percolate the system, and then decreases
when the system becomes overwhelmingly solid. Our results
suggest that a Lindemann-like criterion can be applied in
amorphous materials to determine the transition between liq-
uid and solid states, and the glass transition is the growth and
percolation of rigid domains in supercooled liquids.

The samples consist of binary mixtures of poly-N-
isopropylacrylamide (PNIPAM) particles [21,22] hermeti-
cally sealed between two cover slips, forming a monolayer
of disordered packing. To avoid crystallization, the diameter
ratio between large and small particles is chosen to be 1:1.4,
with the number ratio close to 1. The PNIPAM particles are
thermosensitive which allows the in situ tuning of the packing
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fractions using an objective heater (BiOptechs). PNIPAM
spheres are best described as hard spheres with soft shells
[21,23]. At high packing fractions, PNIPAM particles are
compressible to some extent, allowing observation of dynami-
cal phenomena above the hard sphere jamming transition. The
diameters of the particles are measured by dynamical light
scattering to be 1 and 1.4 μm at 22 ◦C. The total number
of particles in the field of view is about 3500. To cover a
wide range of packing fractions, two groups of samples are
separately prepared. The packing fractions are between 0.890
and 0.850 (jammed solids) for the first group, and between
0.56 and 0.84 (unjammed liquids) for the second group. Here
we use the two-dimensional jamming packing fraction of hard
spheres of 0.85 to indicate that no spontaneous topological
rearrangements are observed in samples of higher packing
fractions during the time window available to our experiments
[24]. Before data acquisition, the samples are equilibrated on
a microscope stage for 3 h. The particle configurations are
recorded by digital video microscopy on a Leica DMI 6000B
microscope with an oil objective with numerical aperture
(NA) of 1.40, at frame rates of 30–110 frames/s. The digital
resolution of the acquired images is 0.1 μm/pixel, and the
particle trajectories are extracted by particle-tracking tech-
niques [25]. Combined optical and tracking error of particle
fluctuations is estimated to be less than 0.01 μm by measuring
the mean-square displacement (MSD) of fixed particles at
different packing fractions.

Spatial constraints felt by individual particles can be mea-
sured by either the lowest energy barrier for displacements
or positional fluctuations. For jammed samples, the phonon
modes are extracted using the covariance matrix analysis
[26–28]. Briefly, we define a time-averaged covariance matrix
Ci j = 〈|δri(t )〉〈δrj(t )|〉t , where δri(t ) is the particle displace-
ment from its equilibrium position, and i, j = 1, . . . , 2N run
over all particles and x (y) coordinates. The covariance matrix
Ci j is directly related to the dynamical matrix Di j under the

harmonic approximation, with Di j = kBT 〈C−1〉i j√
mimj

, where mi is

the mass of particle i. Diagonalization of the dynamical matrix
yields the phonon frequencies and eigenvectors of a “shadow
system” of the same configurations and interactions as the
colloids in experiment, but without the damping. In jammed
solids with stable configurations, the lowest energy barrier is
directly related to the soft phonon modes [29]. We employ a
soft-mode parameter � for individual particles, proposed by
Tong and Xu [30,31] based on the equipartition hypothesis.
For particle i, �2N

i = ∑2N
j=1

1
ω2

j
|�e j,i|2, where ω j is the vibra-

tional frequency of mode j and �e j,i is the polarization vector of
particle i in mode j, and N is the number of particles in a two-
dimensional glass. Positional fluctuations are characterized
by the Debye-Waller factor αi(τ ) = 〈[�ri(τ + t0) − �ri(t0)]2〉,
where �ri(t0) is the position of particle i at time t0, and 〈.〉
denotes the average for trajectories starting with different
t0 [30,32]. The Debye-Waller factor is often employed as a
dynamical parameter. On short timescales when topological
rearrangement is infrequent, the local Debye-Waller factor is
primarily determined by local structures, thus it can be em-
ployed as a structural parameter as well. Previous experiments
and simulations have shown that short-time local positional

fluctuation is a good predictor of long-time dynamics in the
supercooled and glass regime [32,33].

In the following, we show that �2N
i is statistically pro-

portional to the single-particle Debye-Waller factor αi in
metastable glasses. At low temperatures, the system can be
considered fluctuating around the reference state |r0〉 which
sits in a local minimum of the potential energy landscape. We
denote the jth eigenvector as |�e j〉 with the eigenfrequency ω j .
The equation of motion is

|δr̈(t )〉 + D|δr(t )〉 = 0. (1)

Here |δr(t )〉 = |r(t )〉 − |r0〉 is the displacement from the ref-
erence state. The solution of Eq. (1) can be written as a
superposition of the normal modes

|δr(t )〉 =
∑

j

A je
−i

√
Dt |�e j〉 =

∑
j

A je
−iω j t |�e j〉, (2)

where Aj = 〈�e j |δr(0)〉 is the amplitude of the projection
of initial displacement on mode j. The important condition
required by thermodynamics at equilibrium is that the energy
is equally distributed among all the modes. Therefore, we
have for each mode the kinetic energy mA2

jω
2
j/2 = kBT/2,

which leads to A2
j = kBT/mω2

j . The local Debye-Waller factor
is calculated

αi(τ ) = 〈[�ri(τ + t0) − �ri(t0)]2〉
= 〈[δ�ri(τ + t0) − δ�ri(t0)]2〉
= 〈δ�ri(τ + t0)2〉 − 2〈δ�ri(τ + t0) · δ�ri(t0)〉

+ 〈δ�ri(t0)2〉. (3)

Since the normal modes are excited by thermal noise, we
substitute Eq. (2) into Eq. (3) and apply the random phase
approximation. The second term in Eq. (3) vanishes, which
leads to

αi = 2
∑

j

A2
j �e ji · �e j,i = 2kBT

mi

∑
j

1

ω2
j

|�e j,i|2. (4)

Except for the overall proportional coefficient, the right side
of Eq. (4) is just the soft-mode parameter �i.

The high correlations between soft mode � and Debye-
Waller factor α are experimentally demonstrated in jammed
colloidal glasses. Figure 1(a) plots Spearman’s rank corre-
lation between �n

i and αi as a function of the fraction of
the lowest frequency modes n

2N included in jammed colloidal
glasses. The correlation to local dynamics comes predomi-
nantly from the lowest frequency modes, as the bottom 0.5%
of modes (∼30 for our system) achieve a correlation over
0.8. The inset of Figure 1(a) plots the correlation between
�30

i and αi at different packing fractions, which shows that in
jammed solids, positional fluctuations of individual particles
can be well described by a handful of soft modes. Figure 1(b)
shows the spatial distribution of cooperatively rearranging
regions (CRRs) composed of the top 10% fastest particles
(white circles) [34] and �30

i (colored contours). It is clear that
regions with higher concentrations of soft modes are spatially
correlated with fast local dynamics.

In jammed glasses, soft modes can be accounted for by
short-time fluctuations of particle positions. Figure 1(c) plots
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FIG. 1. Correlation between soft mode and Debye-Waller factor in jammed packings. (a) Correlation between αi and �n
i as a function

of the fraction of the lowest frequency modes n/2N included in �n
i at different packing fractions. Inset: correlations between α and �30 at

different packing fractions. The noise level is about 0.02. (b) Real space distribution of cooperatively rearranging regions (white dots) and �30

at φ = 0.850 (colored contours), normalized by the average value. (c) Rank correlations between �2N
i and αi(τ ) as a function of τ for different

packing fractions. The noise level is about 0.02. Inset: MSDs at different φ.

the correlation between αi(τ ) and �2N
i as a function of the

time window τ in which αi is measured. The correlation
increases rapidly for small τ values and reaches ∼0.8 at
∼1s, within the β-relaxation timescale (∼10s) defined by
the middle of the plateau in the log-log plot of the mean-
square displacements [Fig. 1(c), inset] [32]. During this small
time window, the positional fluctuations of the particles are
significantly greater than the optical, tracking, and drifting
errors in the experiments. The high correlations between
short-time αi(τ ) and �2N

i suggest that the local structures
can be adequately explored at relatively short periods of
time. Thus short-time particle Debye-Waller factor can be
employed as an effective soft-mode parameter in colloidal
systems below jamming [35], where direct measurements of
spatial distribution of soft modes are difficult.

We now apply αi(τ ) in unjammed colloidal liquids to
measure local mechanical constraints. As particles are diffu-
sive with changing local environments in unjammed fluids,
there are significant variations of the fluctuations of the same
particle over time. For liquids, we employ αi(τ, t0) = [�ri(τ +
t0) − �ri(t0)]2; αi(τ, t0) is no longer averaged over t0, and is a
function of both t0 and τ . To identify the relevant timescales
over which local structures have the most influence over future
dynamics in liquids, we measure the temporal correlations be-
tween αi(t0, τ ) and local dynamics measured by nonaffine dis-
placement D2

min(	t ) [36,37] after the preceding structures are
measured. D2(t1, t2) = ∑

n

∑
i[r

i
n,t2 − ri

0,t2
− ∑

j (δi j + εi j ) ×
(r j

n,t1 − r j
0,t1

)]2, where ri
n,t is the ith (x or y) component of

the position of the nth particle at time t, and the δi j + εi j

that minimize D2 are calculated based on ri
n,t . D2

min measures
the particle level nonaffine strain, i.e., the minimum mean
square difference between actual relative displacements of
particle to its neighbors and the relative displacements that
they would have if they were in a region of uniform strain.
The correlation between αi(t0, τ ) and D2

min is averaged over
trajectories starting from different t0.

Correlations between αi(t0, τ ) and D2
min(	t ) depend on

both the window τ in which structural information is col-
lected, and 	t , the timescale of the dynamics after αi is
measured. Figure 2 plots the correlations between αi and
D2

min averaged from trajectories starting from different t0 as a
function of τ and 	t in liquids of different packing fractions.

The highest correlations are achieved at τmax, indicated by
grey dashed lines. τmax is thus the proper timescale to identify
structures that have the highest predictability for dynamics
in liquids. For observation window shorter than τmax, insuffi-
cient structural information is collected, and for much longer
time windows, relevant information will eventually be lost in
structural relaxations. In our experiments, τmax is found to
be in the vicinity of β-relaxation time τβ , indicated by white
dashed lines. The β-relaxation time and α-relaxation time of
the samples are extracted by fitting the intermediate scatter-
ing function Fs(q, t ) = 〈∑N

i=1 eiq̂m·[xi (t )−xi (0)]〉
θ
/N with a two-

step stretched exponential function (the Kohlrausch-Williams-
Watts function) [38,39]. Here x j (t ) is the position of particle i
at time t , N is the number of particles, qm is the scattering
vector determined by the first peak in the structural factor,
and 〈.〉

θ
indicates an average over 120 evenly distributed

directions of qm. For liquids with only one-step relaxations,
the fitting of the function yields two nearly identical relaxation
times.

Figure 3(a) plots the correlation between αi(t0, τmax) and
D2

min(	t ) as a function of 	t . At low packing fractions, the
correlation between αi and local dynamics is low, and it
decays almost immediately after the αi is measured. This short
memory in dynamics reflects a nearly flat potential energy
landscape where structural relaxations are facilitated by free
diffusion and collisions between particles. The energy land-
scape becomes more rugged as the packing fraction increases,
and an activation mechanism begins to emerge [40]. At higher
packing fractions, the correlation between αi and D2

min first
increases with 	t then decreases after reaching a peak value
at 	tact. This delayed correlation peak between local con-
straints and structural relaxations signifies the emergence of
rearranging barriers, hence finite rigidity of the system, with
	tact being the average time required for thermal fluctuations
to overcome the barriers for structural relaxations. When the
packing fraction is further increased, the energy barrier also
increases, with higher peak correlation values. Figure 3(a) is
obtained using the tracking algorithm developed by Crocker
and Grier [25]. We also applied three other published tracking
algorithms by van der Wel and Kraft, Lu et al., and Gao
and Kilfoil respectively [41–43], and obtained nearly identical
correlation curves from the microscopy data.
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FIG. 2. Structure-dynamics correlation Cαi (t0,τ )−D2
min (	t ) averaged from trajectories starting from different t0 as a function of 	t and τ in

liquids. The packing fractions are (a) 0.84, (b) 0.79, (c) 0.74, (d) 0.69, (e) 0.63, and (f) 0.56. The white dashed line indicates the β-relaxation
time τβ and the grey dashed line indicates the τmax for each packing fraction.

The rise of the relaxation barriers coincides with the
separation of α- and β-relaxation timescales in liquids [44].
Figure 3(b) plots the measured τα , τβ , and 	tact in unjammed
colloidal samples. The increase of the relaxation time is mod-
est near the jamming point compared to standard hard-sphere
systems [45,46], due to the softness of PNIPAM spheres.
Below φ = 0.69, 	tact is short, and the τα and τβ are close.
Without obvious peaks, 	tact is chosen to be the point where
the correlation between αi and D2

min starts to decay, as indi-
cated by vertical arrows in Fig. 3(a). Between the packing
fraction of 0.63 and 0.69, the α- and β-relaxation times begin
to separate, indicating the onset of glassy dynamics; and
a pronounced correlation peak appears for φ = 0.69. 	tact

becomes significantly larger than τβ when the packing fraction
is further increased. As the αi is measured on the timescale of
τmax (close to τβ), a 	tact greater than τβ allows the prediction
of long-time dynamics with short-time structural information.

Temporally, local dynamics in liquids begin to decouple
from earlier structures after 	tact. An interesting question is
whether the average positional fluctuations of the particles
reach a common length scale when the system begins to
behave like a fluid, as in the case of the melting of crystals.
In Figure 3(c), we replot the Cαi−D2

min
as a function of system

MSDs. For all the packing fractions, the correlation begins
to decay around 17% of the averaged particle diameter d
indicated by the dashed line, close to the Lindemann criterion
for the melting of crystals [6], despite orders of magnitude
differences in relaxation timescales between these liquid sam-
ples. We can thus define L = 0.17d as the equivalent melting
criterion for glasses, and generalize the Lindemann criterion
from the melting of crystals to the transition between solid
and fluid phases in amorphous materials [7–20] where the di-
chotomy between solid and fluid phases has been ambiguous.
For a given time window, structures that evolve less than the

FIG. 3. Structure-dynamics correlation during the glass transition. (a) Spearman’s rank correlation between αi(t0, τmax) and D2
min(	t ) as

a function of 	t . The correlations are averaged from trajectories starting from different t0. The vertical arrows indicate the 	tact when the
correlations start to decay. Inset: the time sequence for measuring α(t0, τ ) and D2

min(	t ). (b) φ dependence of the activation time 	tact , and
the α and β relaxation time. The dashed line indicates the onset of glassy dynamics. (c) Structure-dynamic correlation Cαi (t0,τmax )−D2

min (	t ) as
a function of MSDs normalized by the corresponding mean diameter at each packing fraction. Vertical dotted line indicates the Lindemann
criterion. The noise level is about 0.02.
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FIG. 4. Structure evolution during the glass transition. (a)–(f) Spatial distribution of αi(t0, τmax) at different packing fractions, binarized
by the Lindemann criterion. Red colors are fluid regions with αi(t0, τmax) larger than the Lindemann criterion; blue colors are rigid regions
with αi(t0, τmax) below the Lindemann criterion. (g) Average αi(t0, τmax) and the percolation of rigid regions during glass transition. Left axis:
average αi(t0, τmax) normalized by Lindemann criterion, as a function of φ. The dashed line indicates the onset of glassy dynamics shown
in Fig. 3(b). The black squares (data 1) are measured from the same dataset as in Figs. 1 and 2. To extend the range of the plot, we include
measurements from an additional dataset (data 2, red circles). Error bars represent standard deviations. Right axis: the probability of rigid
regions percolating the field of view (blue triangles). The probability is calculated as the fraction of the configurations with rigid regions
percolating the field of view in all measured configurations. (h) Peak value of dynamical susceptibility χ∗

4 as a function of φ.

L are considered solid-like or rigid, while structures evolving
more than the L are considered fluid-like.

Before applying the Lindemann-like criterion locally to
identify rigid or fluidic domains, a proper observation time
window needs to be determined. In the original Lindemann
theory for crystals, the vibrational fluctuations of atoms
around equilibrium positions are considered. For glasses,
atoms can be considered primarily vibrating in cages on the
β-relaxation timescale. However, instead of arbitrarily impos-
ing the β-relaxation time, we employ τmax, which naturally
emerges as the timescale most pertinent to future dynam-
ics from intercorrelation measurement, as the observation
window for the identification of rigid regions. As shown in
Fig. 2, τmax at different packing fractions are very close to the
measured β-relaxation times.

Using the time window of τmax, we identify solid-like do-
mains in unjammed samples whose αi(t0, τmax) are below the
Lindemann criterion, and fluid regions with higher αi(t0, τmax)
during the glass transition. Figures 4(a)–4(f) plot the snap-
shots of the spatial distribution of αi(t0, τmax) at different
packing fractions, binarized by the Lindemann criterion. Bond
percolation based on the particle positions is used after we
cluster rigid particles from the nearest neighbors which are
determined from the first minimum of the radial distribution
function. At low packing fractions, the system is mostly fluid-
like (red color) with small pockets of solid-like regions (blue
color). The rigid regions grow with the packing fraction and

begin to percolate the system around φ = 0.69 until complete
solidification near the jamming point.

Key features of the percolation phase transition are re-
covered by analyzing the distributions of the size and shape
of the solid-like clusters, which suggests that the glass tran-
sition can be described by classical percolation phase tran-
sitions. Figure 5(a) plots the distribution of cluster size of
the rigid domains before percolation. The distributions can
be well fitted by a power-law function with an exponen-
tial cutoff. The power-law exponent is 0.7, independent of
packing fraction. The probability to observe large clusters
is higher than randomly generated clusters, as plotted in
Fig. 5(b), which suggests that particles in rigid domains are
spatially correlated. Figure 5(c) plots the cluster size and
radius of gyration of rigid clusters, which show a universal
fractal dimension of 1.78 for all packing fractions before
percolation. Both the maximum and mean cluster sizes di-
verge when approaching a critical packing fraction φc =
0.69, as plotted in Fig. 5(d), the fitted power-law exponnt
is −3.58 for both characteristic sizes. Thus, the evolution
of rigid domains in two-dimensional colloidal glasses shows
the hallmarks of a continuous phase transition, with strik-
ing similarities to the observations in solid-liquid transition
of three-dimensional colloidal crystals [47]. The percolation
probability of rigid regions and the averaged αi(t0, τmax) of the
system shows a sharp transition around φ = 0.69, as plotted in
Fig. 4(g).
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FIG. 5. Distribution of the size and shape of rigid clusters approaching the percolation. (a) Cluster size distributions P(n) of rigid clusters
before percolation; drawn lines are fits to a power-law distribution with exponential cutoff. (b) Comparison of experimental P(n) for φ = 0.63
(red circles) and a distribution for a randomly generated distribution with the same number of rigid particles (black squares). (c) Cluster size n
as a function of radius of gyration Rg normalized by average particle diameter d at φ from 0.45 to 0.63; drawn line indicates a fractal dimension
of 1.78. (d) Characteristic cluster size 〈n〉 taken as the time-averaged size of the largest cluster (circles) or the time- and ensemble-averaged
size of all clusters (square) as a function of packing fraction; lines indicates a power-law fit to 〈n〉 ∝ |(φ − φc )/φc|−3.58.

The growth and percolation of the rigid regions in cooling
liquids provide a microscopic origin for the onset of glassy dy-
namics shown in Fig. 3(a) and the dynamical heterogeneity. At
low packing fractions, isolated rigid structures are created and
relaxed by a one-step fluctuation-relaxation process. The size
and the fraction of rigid regions both increase as the samples
are further cooled. At a critical packing fraction (φ = 0.69
in our experiments), the rigid regions become connected and
percolate the system [48,49]. Before the percolation, isolated
rigid domains exist in the liquid. However, unconnected rigid
clusters cannot render the whole system rigid, as they are
simply floating in a continuous phase of flowing liquid. Only
after the percolation, the ability of the spanning network of
rigid domains to resist small stresses gives rise to finite rigidity
of the whole system. For the relaxation dynamics, before
percolation, the rigid domains are formed and relaxed locally
through fluctuations in the liquid, with a single relaxation
time. After the percolation, while the liquid relaxation process
remains in the liquid phase, the relaxation of the system-wide
rigid network is much harder than that of isolated rigid clus-
ters, which results in a much longer relaxation time, namely,
the α-relaxation time. The percolating rigid network also
impedes long-distance diffusions of particles. Under spatial
confinement, particles are forced to rearrange locally through
cooperative motions, or β relaxation [34,50,51]. The decou-
pling of relaxation times signals the transition from a local

relaxation process to a correlated relaxation process [52,53].
Dynamical heterogeneity naturally emerges from the competi-
tion between these two different relaxation mechanisms [54].
The peak of the dynamical susceptibility χ∗

4 first increases
around φ = 0.69 and then decreases near the jamming point
(φ j ∼ 0.85) when the whole system becomes homogeneously
rigid [55], as plotted in Fig. 4(h) [56,57]).

In summary, by measuring the local constraints in col-
loidal liquids and glasses, we directly observe the emergence
and growth of structure-dynamics correlations in supercooled
liquids, which depend on a Lindemann-like length scale in
configurational changes. The glass transition is then shown
to be the growth and percolation of the rigid regions in
supercooled liquids, which can be employed to explain the
slowing down and the dynamical heterogeneity [54,58]. Al-
though our results are obtained from a quasi-two-dimensional
hard-sphere colloidal system, the method to identify solid-like
regions in fluids can be easily generalized to other glassy
systems. Following the melting analogy, the rigid clusters in
the glass transition are similar to crystalline nuclei during
crystallization. These clusters are also natural candidates for
low-entropy droplets in random first-order transition theories
for their slower dynamics [9]. We thus speculate the perco-
lation of rigid domains during the glass transition can also
be observed in three-dimensional glasses [46,59–62] or in
systems with different interactions, while the specific path
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leading to the percolation or the evolution of the connected
rigid network after it may be different, which will be an
interesting topic for future simulation or experimental studies.
Our results are strong evidence that local constraints are a
useful parameter to connect structure to dynamics in glassy
systems compared to purely geometric or topological metrics.
A direct link between conventional geometric structures and
glassy dynamics may be established by searching for local
and nonlocal configurations that contribute the most to local
constraints in glassy materials [63].
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