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Due to its inherent out-of-equilibrium nature, active matter in
confinement may exhibit collective behavior absent in unconfined
systems. Extensive studies have indicated that hydrodynamic or
steric interactions between active particles and boundary play
an important role in the emergence of collective behavior. How-
ever, besides introducing external couplings at the single-particle
level, the confinement also induces an inhomogeneous density
distribution due to particle-position correlations, whose effect
on collective behavior remains unclear. Here, we investigate this
effect in a minimal chiral active matter composed of self-spinning
rotors through simulation, experiment, and theory. We find that
the density inhomogeneity leads to a position-dependent fric-
tional stress that results from interrotor friction and couples the
spin to the translation of the particles, which can then drive a
striking spatially oscillating collective motion of the chiral active
matter along the confinement boundary. Moreover, depending on
the oscillation properties, the collective behavior has three differ-
ent modes as the packing fraction varies. The structural origins
of the transitions between the different modes are well identi-
fied by the percolation of solid-like regions or the occurrence of
defect-induced particle rearrangement. Our results thus show that
the confinement-induced inhomogeneity, dynamic structure, and
compressibility have significant influences on collective behavior
of active matter and should be properly taken into account.
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Active matter has attracted considerable interest in the past
two decades due to its intrinsic nonequilibrium nature

and potential applications in microdevices and smart materials
(1–6). In active-matter systems, the constituent particles indi-
vidually convert stored or ambient energy into particle motility:
self-propelled translation (7–9) or rotation (10–15). The active
matter often exhibits exotic nonequilibrium phenomena, among
which the emergent collective behavior of active particles is
especially intriguing (16–22).

Thanks to the motility of active particles, the role played
by originally trivial ingredients in passive systems becomes
extremely subtle and important in active systems. A relevant
example is that the confinement wall in an active system not
only prevents the particles from escaping and introduces surface
tension, as in equilibrium cases, but also gives rise to collec-
tive motion of active particles, which is otherwise absent. For
instance, sperm cells and microorganisms form rotating clus-
ters near the substrate (23–25), colloidal surfers on the substrate
aggregate into living crystals (26), and colloidal rollers and
bacteria confined by side walls self-organize into vortex pat-
terns (27–29). In these situations, the hydrodynamic interactions
between the boundary and the active particles are critical to the
emergence of collective behavior.

In this article, we study how confinement may influence the
nonequilibrium collective dynamics of interacting active rotors.

Compared with their translational counterparts, systems com-
posed of active rotors remain much less explored. Nevertheless,
as a representative chiral active matter that breaks both par-
ity and time-reversal symmetries, the active-rotor systems have
recently been the subject of fundamental theoretical interest
(30, 31). It has been reported that a fluid of interacting rotors
in confinement yields a collective edge flow parallel to the
boundary (12, 32, 33), which is proven to be even topologically
protected (34). In this case, the steric particle–boundary inter-
actions impose a boundary condition that allows the conversion
of spin-angular momentum into “orbital” angular momentum.
However, apart from the steric interactions with the particles,
confinement can also cause a spatially nonuniform distribution
of particle-number density (35, 36). The density inhomogene-
ity is ubiquitous in confined interacting many-body systems and
could have unexpected effects on collective behavior. Here, we
numerically and experimentally investigate the effects of the
density inhomogeneity on the emergent collective behavior in a
confined chiral active matter. We show that the density inho-
mogeneity can give rise to a spatially oscillating edge flow,
and its underlying mechanism is clarified through a continuum
hydrodynamic theory with a density-dependent antisymmetric
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frictional stress. Furthermore, we identify three different collec-
tive modes of motion and their respective structural origins.

Results
The simulation system consists of N spinning disks of diame-
ter σs confined in a circular boundary of radius R, as shown
in Fig. 1A. Each constituent disk spins counterclockwise, driven
by a constant torque, and different rotors interact via a repul-
sive potential with a surface friction. To focus our study on
confinement-induced inhomogeneity, we only allow a radial
repulsive interaction between the wall and the particles. The
particle dynamics is described by the underdamped Langevin
equation. In experiments, a circular vessel containing a mono-
layer of gear-like granular rotors (Fig. 1B) is mounted on an
electromagnetic shaker, and the rotors’ spinning is driven by
vertical vibration. To compare the simulations with the experi-
ments, we use a dimensionless number, ωs/Dr , to characterize
the motility of an isolated rotor for both systems. Here, ωs and
Dr refer to the spin velocity and the rotational diffusion coeffi-
cient of the isolated rotor, respectively. The experimental ωs/Dr

is measured as 6.2 (SI Appendix), and we choose ωs/Dr = 6.0 in
simulations.

Oscillating Collective Edge Flow. We first consider a fluid system
with the packing fraction ρ= 0.6 in simulation (Movie S1). Fol-
lowing previous work (12, 32), we measure the steady-state mean
tangential velocity of the particles in different concentric annuli,
vt (parallel to the boundary), to quantify the collective motion.
Note that the mean radial velocity normal to the wall, vr , van-
ishes due to the confinement. Fig. 2B displays the orbital angular
velocity of the rotor fluid, vt(r)/r , as a function of the distance
from the system center, r . Throughout the paper, the orbital
angular velocity is normalized by the spin velocity of the isolated
rotor, ωs . Indeed, there exists an edge flow near the bound-
ary. Interestingly, the vt(r)/r varies nonmonotonously with the
distance and exhibits a significant oscillation in space and even
changes the sign. The oscillation period of the collective motion
is equal to the rotor diameter. The magnitude of the oscilla-
tion decays substantially as r decreases and vanishes far away
from the boundary, indicating that the edge flow is localized near
the boundary. Previous studies on the confined spinners also
reveal the emergence of the edge flow, but with no oscillation
(12, 32, 33).

To understand the microscopic mechanism of the spatially
oscillating edge flow, we note that the existence of the con-
finement breaks the spatial uniformity of the system. Thus, the
environment felt by the particles close to the boundary is consid-
erably different from that far from the boundary. Particularly, the

boundary wall can induce a spatially oscillating particle distribu-
tion in passive fluids to minimize the system free energy (35, 36).
The number density distribution, n(r), of the active rotors is also
plotted in Fig. 2B and exhibits a behavior similar to that of the
passive system (SI Appendix), implying that the structural prop-
erties of the chiral active system are insensitive to the spin. Based
on the spatial inhomogeneity and the active spinning, the driving
force for the edge flow can be easily identified. As illustrated in
Fig. 2A, the particles in the outermost layer, i.e., rotor 1, experi-
ence a tangential force from rotor 2, F21, generated due to the
friction between the spinning particles. Because the confinement
wall is smooth and applies no tangential force on rotor 1, F21

drives rotor 1 to move counterclockwise. Nevertheless, for the
particles in other layers, e.g., rotor 2, the outer-layer rotor 1 and
the inner-layer rotor 3 contribute opposite frictional forces F12

and F32 on it. If the number density of the inner layer is higher
than that of the outer layer, the inner layer will, on average, apply
a larger tangential friction, and, hence, rotor 2 will move coun-
terclockwise; otherwise, it will move clockwise. Therefore, the
oscillating number density distribution, which has an equilibrium
structural origin, can give rise to a position-dependent (spatially
oscillatory) frictional stress, which then drives an oscillating edge
flow in space. Far away from the boundary, the system density as
well as the frictional stress tends to be homogeneous, and, hence,
the macroscopic flow vanishes. Such a scenario is formulated via
a continuum hydrodynamic theory in Theoretical Description for
the Oscillating Edge Flow.

The corresponding experimental results are given in Fig. 2C,
which plots the orbital angular velocity of the granular spinners
(Fig. 1B) with a low packing fraction ρ= 0.65 (the ratio of the
area occupied by the particles to that of the vessel). The results
also show a spatially oscillating edge flow (Movie S2), with the
period being around the spinner diameter. Although the gran-
ular spinners are macroscopic and dissipative, confinement can
still lead to a spatially inhomogeneous density distribution sim-
ilar to the simulation. Consequently, the essential requirements
for the emergence of oscillating collective motion (i.e., nonuni-
formity, spin, and interparticle friction) are properly satisfied.
The experimental results thus provide strong support for our
theoretical predictions.

Nevertheless, two apparent distinctions exist between the sim-
ulation and the experiment. One is that vt(r)/r of the simulation
oscillates around zero (Fig. 2B), while in the experiment, vt(r)/r
oscillates around a reference value that decays substantially with
decreasing r (Fig. 2C). The other is that the oscillation mag-
nitude of the simulation vt(r)/r is stronger than that of the
experimental vt(r)/r . We speculate that these discrepancies
come from the following facts. In the experiment, the shaken

Fig. 1. (A) Simulation snapshot of 1,000 spinning disks in confinement, with the packing fraction ρ= 0.6, where Inset shows a zoomed-in image. (B)
Experimental snapshot of the gear-like spinners in a circular vessel with ρ= 0.65. Lower Inset is the sketch (side view) of a 3D-printed active rotor, and
Upper Inset is the top view of the rotor with D1 = 15.50± 0.06 mm and D2 = 21.26± 0.06 mm.
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Fig. 2. (A) Schematic diagram for the microscopic mechanism of the collective motion in the confined active rotor system. (B–D) The orbital angular velocity
and the particle number density distribution (normalized by the mean particle number density) as a function of the distance to the system center: simulation
results with γ= 100 (B), experimental results (C), and simulation results with γ= 2 (D), where the blue lines and the left vertical axis refer to the angular
velocity, the magenta lines and the right vertical axis refer to the number density distribution, and the dashed lines are an exponential fit to the peak values
of the orbital angular velocity.

gears often separate from the baseplate so that their transla-
tional friction with the substrate is greatly weakened. Besides, the
gear–gear interactions possess multiple characteristic lengths,
e.g., the summit–summit and summit–cleft distances. To account
for these aspects in the simulation, we first decrease the transla-
tional frictional coefficient, γ, and then use a binary mixture of
spinning disks of different sizes (with the size ratio' 1.3, roughly
mimicking the multiple coupling lengths). The simulation results
of the modified model are displayed in Fig. 2D, which is in good
agreement with the experimental results in Fig. 2C and supports
our speculation.

Theoretical Description for the Oscillating Edge Flow. To better
clarify the underlying mechanism of the spatially oscillating
collective motion, we use a two-dimensional (2D) continuum
hydrodynamic theory (12) to describe the chiral active fluid.
Importantly, we consider a position-dependent frictional stress
induced by the inhomogeneous distribution of the rotors, which
is essential for the emergence of the oscillatory edge flow in
terms of Oscillating Collective Edge Flow. The hydrodynamic
variables are the mass density of spinners %(r, t), the momen-
tum density %(r, t)v(r, t), and the angular momentum density
I(r, t)ω(r, t), with I(r, t) the spinner moment of inertia density,
which, respectively, obey the conservations of mass, momentum,
and angular momentum. The mass-continuity equation reads

(∂t + v ·∇+∇· v)%= 0. [1]

In a polar coordinate system,∇= r̂∂r + φ̂ 1
r
∂φ and v = r̂ vr + φ̂vt

with r̂ and φ̂ separately being the radial and tangential unit
vectors. In the steady state, vr (r) = 0 together with the system
symmetry imply v ·∇%= 0, such that Eq. 1 becomes

∇· v = 0, [2]

although the chiral active fluid under study is compressible.
The conservation of momentum takes the form,

%(∂t + v ·∇)vi = ∂jσij −Γvi , [3]

with Γ the frictional coefficient from environment, which is
related to the frictional coefficient of single spinner by Γ = γn =
4γρ/πσ2

s . And the stress tensor, σij , is expressed as

σij =−pδij + η(∂ivj + ∂j vi) + εijηR(2ω−Ω), [4]

where η is the shear viscosity, εij the Levi–Civita symbol, Ω =
ẑ · (∇× v) = εij∂ivj the vorticity of the flow field, and ηR the
rotational viscosity that arises from interrotor friction. In Eq.
4, the last term refers to the antisymmetric frictional stress
that couples the spin to the flow; the bulk viscosity term is
absent owing to Eq. 2, and the odd viscosity term (30, 31) is
ignored, as it can be absorbed in the pressure p and does not
contribute to the tangential stress. The shear and rotational
viscosities are position-dependent via the confinement-induced
inhomogeneity of packing fraction. We here focus on the inho-
mogeneous ηR that is the origin of the oscillatory edge flow.
Since ηR results from the interparticle frictional collisions, it
is proportional to the spinner packing fraction and the colli-
sion frequency of a tagged spinner with its surrounding particles.
From the Enskog theory, the collision frequency can be approx-
imately estimated as 8ρg(σs)

√
kBT/πmσ2

s (37), with g(σs)
the pair correlation function at contact. Thus, we have ηR =
Aρ2g(σs) with A an unknown prefactor. A virial expansion yields
g(σs) = 1−7ρ/16

(1−ρ)2 −
ρ3/16

8(1−ρ)4 (38), such that the rotational viscosity
becomes

ηR(ρ) =Aρ2
[

1− 7ρ/16

(1− ρ)2
− ρ3/16

8(1− ρ)4

]
, [5]

which well fits independent simulation results with the prefactor
A' 2.07 (SI Appendix). Eq. 5 means that the oscillatory profile of
the local particle-packing fraction results in a spatially oscillatory
ηR (Fig. 3, Inset) and, hence, frictional stress.

As the edge flow is weak and the Reynolds number of the
chiral active fluid is low (the centripetal acceleration %v ·∇v

Liu et al. PNAS | June 2, 2020 | vol. 117 | no. 22 | 11903
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Fig. 3. Comparison of the orbital angular velocities obtained from the sim-
ulation (blue square) and the continuum theory with the nonuniform ηR

(red solid line). The system is the same as that of Fig. 2B. In the theoretical
calculation, the position-dependent ηR (Inset) is introduced by substituting
the packing fraction profile from the simulation measurement into Eq. 5. For
comparison, we also plot the theoretically calculated vt/r for an incompress-
ible fluid of rotors (i.e., constant ηR; black dashed line), and the calculation
details are provided in SI Appendix.

is negligible), from Eqs. 3 and 4, the steady-state equation of
momentum conservation thus is

0 =−∂ip + η∇2vi + εij∂j [ηR(2ω−Ω)]−Γvi . [6]

Here, for simplicity, η is regarded as a constant and equals to its
value in the bulk, η' 25, which can be determined from inde-
pendent simulations by externally imposing a shear flow in an
unconfined active fluid (SI Appendix).

The angular momentum conservation is written as

I (∂t + v ·∇)ω=−Γrω− 2ηR(2ω−Ω) +Dω∇2ω+ τ , [7]

where Γr refers to the rotational friction coefficient from envi-
ronment, Dω to the diffusion coefficient, and τ to the torque
density field. Γr and τ are, respectively, related to their single-
particle counterparts, γr and Td , by Γr = 4γrρ/πσ

2
s and τ =

4Tdρ/πσ
2
s . In the steady state, v ·∇ω= 0, and thus Eq. 7

reduces to

0 =−Γrω− 2ηR(2ω−Ω) +Dω∇2ω+ τ. [8]

In the present packing fraction (ρ= 0.6), the diffusion coefficient
Dω is small such that the diffusion term in Eq. 8 can be safely
neglected. The spin angular velocity thus approximately reads

ω=
τ + 2ηRΩ

Γr + 4ηR
. [9]

Inserting Eq. 9 into Eq. 6, we have for the tangential component
of the momentum equation in polar coordinates,

β∂2
r vt +

∂r (βr)

r
∂rvt −

(β− r∂rβ+ r2Γ)

r2
vt − 2∂rβ

′= 0, [10]

where β= η+ ΓrηR(Γr + 4ηR)−1 and β′=βτ(Γr + 4ηR)−1 are
defined. Thus, the edge flow can be obtained by solving Eq.
10, with the boundary condition vt(r = 0) = 0, which arises

from the rapid decay of the edge flow, and the frictionless
boundary condition at the confined sidewall, σφr (R−σs) =[
ηR
(
∂rvt + vt

r
− 2ω

)
+ η

(
∂rvt − vt

r

)]
r=R−σs = 0. Fig. 3 plots the

theoretical orbital angular velocity that reproduces all of the
features of the oscillatory edge flow obtained from the simu-
lation. Nevertheless, the theoretical calculation underestimates
the oscillation magnitude by a factor of around two, which may
be attributed to the approximations employed in the theoretical
derivation. In addition, there is apparently a phase shift between
the theoretical calculation and the simulation, which originates
from the following fact. The continuum theory neglects the finite
size of the rotor, so that the fluid flow is driven by the local gradi-
ent of the frictional stress, while in the simulations, the fluid flow
is produced by the variation of the frictional stress on the length
scale of the rotor size. Except for the quantitative differences, the
theoretical calculation compares well to the simulation measure-
ment, confirming the microscopic mechanism of the oscillatory
edge flow proposed in Oscillating Collective Edge Flow. With
the obtained vt , the spin angular velocity is determined via Eq.
9, which also agrees well with that measured in the simulation
(SI Appendix). Further verification of the continuum theory is
given in SI Appendix by exploring wider parameter spaces.

Collective Motion Modes of Higher Densities. The nonuniform par-
ticle distribution has been shown to be critical for the emergence
of the oscillating edge flow, which highlights the importance of
the compressibility of the chiral active system. To further study
the effect of the compressibility on the collective motion, we
consider the simulation systems with a wide range of packing
fraction from ρ= 0.50 to 0.82. Interestingly, we find three dif-
ferent modes of collective motion as ρ increases, as shown in
Fig. 4A. For low ρ= 0.6, the collective flow oscillates around
zero, and the magnitude decays to zero as r decreases. The
decaying vt(r)/r is reminiscent of the circular Couette flow of
a viscous fluid confined in two concentric cylinders (39), in which
the outer cylinder rotates at constant angular velocity, while the
inner cylinder remains fixed. This implies that the chiral active
system of low ρ is in the fluid regime. For high ρ= 0.8, the
system rotates as a rigid body at a constant angular velocity with-
out any periodic oscillation (only with fluctuation). In this case,
the system is an elastic solid. At moderate ρ= 0.7, the vt(r)/r
oscillates around a constant nonzero value (without decay), indi-
cating that different domains of the active system can slide over
each other and, at the same time, are constrained in an elastic
background.

For comparison, we also plot the orbital angular velocity of the
experimental spinners at low (ρ= 0.65) and moderate (ρ= 0.78)
packing fractions, as shown in Fig. 4B. The experimental results
are consistent with the simulation in Fig. 4A. Here, an experi-
mental system of high ρ like a rigid body cannot be achieved due
to the gear-like structure of the particles, so the corresponding
results are not provided.

Structural Origins of the Transitions between Different Modes. To
elucidate the structural origin of different modes of the col-
lective motion, we measure the orientational order parameter
ψ6j = (

∑
k∈Nj

e6iθjk )/Nj in the simulations (Fig. 5A), which
characterizes local crystalline order (40, 41). Here, the sum is
taken over the Nj nearest neighbors of particle j , and θjk is the
angle between rk − rj and a fixed arbitrary axis. At ρ= 0.60,
the mean ψ6j is small, and the system is in a viscous fluid
regime. In this case, the particles can easily change their posi-
tions and cannot sustain a rigid rotation (Movie S1). At ρ= 0.80,
most areas (except for the boundary region) have quite large
ψ6j , and the inner-layer particles form a defect-free crystal.
Thus, the active particles cannot change their relative positions,
only allowing a whole rotation (Movie S3). Nevertheless, for

11904 | www.pnas.org/cgi/doi/10.1073/pnas.1922633117 Liu et al.
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Fig. 4. (A) The orbital angular velocity of different collective motion modes for ρ= 0.60, 0.70, 0.80 in simulation. (B) Experimental results for low and
moderate packing fractions, where the vt(r)/r at the moderate packing fraction is displayed on the right red vertical axis.

ρ= 0.70, the regions of high ψ6j percolate and form a solid-like
framework; meanwhile, some defects with low ψ6j distribute
randomly (Movie S4). Owing to the presence of the defects,
the active rotors can rearrange their positions in the elastic
background, exhibiting a “viscoelastic” collective motion. Simi-
lar structural analyses on the experimental systems are carried
out in SI Appendix.

We now investigate the transitions between the various modes
of collective motion. To do this, we analyze the vt(r)/r curves for
a wide range of ρ. The reference value [vt(r)/r ]0, i.e., the aver-
age of vt(r)/r in the bulk, is used to distinguish the viscoelastic
mode ([vt(r)/r ]0> 0) from the collective motion of the viscous
fluid ([vt(r)/r ]0 = 0). Fig. 5B clearly shows that [vt(r)/r ]0 starts

to have a positive value at ρ' 0.64, marking the first transi-
tion point. The oscillation quality distinguishes the viscoelastic
mode (oscillation) from the collective rotation of the elastic solid
(fluctuation). The oscillation quality can be quantified by the
autocorrelation function of si(r)≡ vt(r)/r −〈vt(r)/r〉 for each
curve, C (d) = 〈si(r)si(r + d)〉/ν2 (42), with ν the SD of si(r),
d the distance lag, and 〈·〉 a spatial average. C (d) oscillates for
perfect oscillations, but quickly vanishes for pure fluctuations.
The first positive peak C1 of C (d) characterizes the quality of
an oscillation, which decreases as ρ increases (Fig. 5C). C1 shows
a very steep descent around ρ' 0.8, which thus establishes a rea-
sonable border between oscillation and fluctuation and, hence,
corresponds to the second transition point.

Fig. 5. (A) Contours of the orientational order parameter ψ6j for low (ρ= 0.60), moderate (ρ= 0.70), and high (ρ= 0.80) densities. (B) The reference
angular velocity as a function of ρ, where the dashed line marks the transition point. (C) The first positive peak value of the autocorrelation function C(d)
as a function of ρ, with the steepest descent point marked by the dashed line. (D) The probabilities of percolation for different thresholds (2TSR). (E) The
mean numbers of defects, determined by ψ6j < TD, with various TD being taken.
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Transitions between various modes must arise from the struc-
tural changes of the chiral active matter. According to the
previous discussions, the structural changes correspond to the
percolation of the solid-like regions or the formation of a defect-
free crystal. Fig. 5D plots the probability of the percolation as a
function of ρ. Here, the percolation is thought to occur once the
x or y dimension of the connected solid-like region [i.e., region
with ψ6j ≥ 0.84 (43)] is greater than a threshold size 2TSR, with
TS an imposed number; and the percolation probability is esti-
mated as the average percolation frequency per frame. Clearly,
the percolation probability becomes nonzero at ρ= 0.64, which
agrees quantitatively with the first transition point of the motion
mode given in Fig. 5B. (Note that the percolation here does not
necessarily indicate a liquid-to-hexatic phase transition, given
that our system is too small to distinguish whether there exists
a long-range correlation.) Fig. 5E plots the mean number of
defects, ND , per frame in the bulk as a function of ρ. Here, a
defect is defined as a region with ψ6j less than a prescribed value
TD . The results show that the defects occur only when ρ≤ 0.8,
which is perfectly consistent with the second transition point of
the motion mode, as determined in Fig. 5C. Thus, we clarify
the microscopic structural origins of the transitions between the
different modes of collective motion.

Discussion
The emergent collective motion of the confined active rotors
has been studied numerically, theoretically, and experimen-
tally. Remarkably, this minimal chiral active matter exhibits
rich collective behavior, resulting from an inhomogeneous den-
sity distribution induced by confinement boundary. In partic-
ular, the collective motion has a significant spatial oscillation
and experiences three different modes as the packing fraction
changes. The microscopic mechanisms underlying the collec-
tive behaviors have been elucidated: The position-dependent
frictional stress drives an oscillating edge flow; the percolation
of solid-like regions induces the penetration of the oscilla-
tion into the bulk; and the vanishing of defects disables the
rearrangement of particle positions, resulting in a rigid rota-
tion of the bulk. Our findings highlight the importance of the
compressibility and the confinement-induced inhomogeneity in
the oscillatory collective motion of chiral active system and
also the influence of nonequilibrium structure on dynamics of
active matter.

Methods
Simulation. Different rotors interact via a repulsive Lennard–Jones (LJ)

type of potential, U(r) = 4ε
[(σs

r

)2l −
(σs

r

)l
]
+ ε, with r being the distance

between rotor centers. Here, we set the disk diameter σs = 2, the interaction
intensity ε= 1, and the potential stiffness l = 12. Besides the radial poten-
tial interaction, different disks also couple tangentially through a surface
friction realized by the bounce-back collision (44). The interaction between
the boundary wall and the rotors is chosen as the repulsive LJ potential with
l = 24 and the interaction length σs, without any friction. In simulations,
N = 1,000 is fixed, and the packing fraction is adjusted by changing R.

The translational degree of freedom of the active particles satisfies the
underdamped Langevin equation (44),

mv̇ = Fr + Fw +η− γv, [11]

with m = 1 being the particle mass, γ= 100 the translational friction coeffi-
cient, and Fr and Fw the interparticle and particle-wall steric forces, respec-
tively. Here, the stochastic force η is Gaussian distributed with 〈η(t)〉= 0
and

〈
η(t)η(t′)

〉
= 2kBTγδ(t− t′), with the temperature kBT = ε. Similarly,

the spin-angular velocity of the particles evolves according to

Isω̇= Td + ξ− γrω, [12]

where Is = 1
8 mσ2

s refers to the rotor momenta of inertia, γr = 1
3σ

2
s γ the

rotational friction coefficient, Td = 6 the driving torque, and ξ the Gaussian
distributed stochastic torque with zero mean and

〈
ξ(t)ξ(t′)

〉
= 2kBTγrδ(t−

t′). In addition, the bounce-back collision (44) that generates the friction
between two rotors in contact (say, i and j) can be realized by instanta-
neously updating v and ω, according to δvi = δpi/m and δωi =− 1

2 rij ×
δpi/I. Here, the impulse δpi is determined by conservation laws,

δpi =−m
(

ṽ‖ij +
κ

1 +κ
ṽ⊥ij

)
, [13]

with the parameter κ= 4Is/mσ2
s , and ṽ‖ij and ṽ⊥ij the components of the

relative velocity at collision point, (vi − vj)− 1
2 (ωi +ωj)× (ri − rj), parallel

and perpendicular to ri − rj , respectively. The velocity Verlet algorithm is
used to integrate the equations of motion with the time step ∆t = 10−3×√

mσ2
s /ε.

The rotors are initially randomly distributed; 105 steps are performed to
eliminate the effects of the initial configuration, and 6.4× 109 steps are per-
formed to compute the physical quantities. To measure the orbital angular
velocity vt/r and the number density distribution n of the rotors, we divide
the system into concentric annuli, with the width ∆r = 1

4σs.

Experiment. Gear-like rotors are put in a circular vessel mounted on an elec-
tromagnetic shaker. An acrylic cover placed on the top of the vessel can
suppress vertical motion of the particles, and thus ensure that the parti-
cles move horizontally on the 2D baseplate. The shaker provides a vertical
vibration Z = Asin(2πft), with f the vibration frequency and A the vibration
amplitude. The vibration strength is characterized by Γ = A(2πf)2/g, with g
the gravitational acceleration. Experiments are performed with f = 50 Hz
and Γ = 1.7. A high-resolution camera system is used to track the particle
trajectories.

The granular rotors used in our experiment are similar to those in
previous work (45–48). The particles rest on circularly aligned tilted legs
(Fig. 1B), which are manufactured from polylactide by using a three-
dimensional (3D) printer. Owing to geometric asymmetry, the tilted legs
act as elastic springs and transfer vibrational energy from the shaker
into a unidirectional rotation of the rotor without active translation. The
distribution of translational displacement of a single rotor is symmet-
rical with respect to the origin, suggesting that the rotor indeed per-
forms an unbiased random walk (SI Appendix). The interactions between
rotors are short-ranged repulsive. The protruding teeth of the gear-like
rotors can significantly enhance the interparticle friction. Nevertheless, disc-
shaped rotors made of a material with a large friction coefficient are
expected to exhibit similar collective behavior. The effect of interrotor
friction on the collective motion is studied by simulation and theory (SI
Appendix).

Data Availability. All data discussed in the paper are available in the main
text and SI Appendix.
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