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Evidence for growing structural correlation length in colloidal supercooled liquids
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Using video microscopy, we measure the long-time diffusion coefficients of colloidal particles at different
concentrations. The measured diffusion coefficients start to deviate from theoretical predictions based on random
collision models upon entering the supercooled regime. The theoretical diffusion relation is recovered by
assigning an effective mass proportional to the size of structurally correlated clusters to the diffusing particles,
providing an indirect method to probe the growth of static correlation length scales approaching the glass
transition. This method is tested and validated in the crystallization of mono-disperse colloids in quasi-two-
dimensional experiments. The correlation length obtained for a binary colloidal liquid increases by a power law
toward a critical packing fraction of ∼0.79. The system relaxation time exhibits a power-law dependence on the
correlation length in agreement with dynamical facilitation theories.
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Glass transition is one of the most intriguing problems in
physics. A longstanding question about glass transition is,
“what is the structural origin for the drastic slowdown of the
dynamics near the glass transition?” The Adam-Gibbs theory
suggests that the relaxation process in supercooled liquids is
determined by the activation energy of the cooperative regions
[1]. As the temperature is lowered, the activation barrier in-
creases with the size of the cooperative region. Along this line,
motivated by mean-field theories of structural glass transition
[2–7], random first-order transition theories (RFOT) associate
the slowing down of the dynamics to the emergence and
growth of a static structural length scale [8–13], which is the
characteristic size of low-entropy droplets.

Many theoretical efforts have been made to detect the
growth of the structurally correlated clusters in liquids and
glasses. Tanaka et al. find that the characteristic length scale
of the medium-range crystalline order (MRCO) follows an
Ising-like power-law divergence towards the glass transition
in polydisperse supercooled liquids [14]. Under the condi-
tion of the isoconfigurational average, Tong et al. show that
the length scale of sterically favored structures grows co-
herently with the dynamical length scales in liquids [15].
Karmakar et al. perform finite size scaling analyses for the
Kob-Anderson Lennard-Jones model to extract a temperature-
dependent static length scale ξs(T ) for the structural entropy,
which determines the structural relaxation time in glasses
[16]. Structural correlation length can also be estimated by
examining elastic vibration modes of systems of different
sizes at low temperatures, which is found to be proportional
to ξs(T ) [17]. Point-to-set (PTS) theory provides a quantitative
method to probe the static correlation length scale by examin-
ing the effect of a field of pinned particles on the dynamics of
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neighboring particles [18]. The dynamics of an unpinned par-
ticle becomes arrested when it is within the range of the static
length scale to a pinned field. Using the PTS approach, recent
simulations observe the growth of static correlation length
scales in supercooled liquids under different pinning patterns
[19–22], with the α-relaxation time increasing exponentially
with the static correlation length.

Generally, the measurements of static structural correlation
length in liquids or glasses require either specific knowledge
of the order probed, which is far from obvious for amorphous
systems, or stringent conditions that are difficult to fully re-
alize in experiments, such as selectively pinning particles in
a thermal environment. As a result, there are relatively few
reports of experimental measurements of the structural cor-
relations in glassy systems. Recent experiments of colloidal
particles confined in spherical cavities show a divergent static
length scale near a critical packing fraction [23]. Using optical
tweezers, experiments in a 2D colloidal system observe a slow
increase of the PTS static length scale near a wall of pinned
particles [24].

In this paper, we propose an alternative method to indi-
rectly detect the growth of correlated structures in supercooled
liquids without the need for pinning particles in experiments.
This method is based on the hypothesis that a diffusing col-
loidal particle in a structurally correlated cluster acquires an
effective mass proportional to the size of the cluster. After this
effective mass has been properly accounted for, the long-time
diffusion coefficient D of the particles can then be described
by the universal diffusion relation based on random collision
models [25,26],

D = kBT

AξB(1 − S2) + ξs
. (1)

Here, kBT is the thermal energy, ξB is the binary collision
friction in the Enskog gas theory, S2 is the two-body excess
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entropy, ξs is the solvent friction, and A is a fitting parameter
independent of the system packing fractions. An averaged
static length scale can be extracted from the effective mass
of structurally correlated clusters.

Using this method, we measure the long-time diffusion
coefficients of colloidal particles in normal and supercooled
liquids in quasi-two-dimensional (quasi-2D) configurations.
The measured diffusion coefficients begin to deviate from
Eq. (1) as the system enters the supercooled stage, signaling
the emergence of correlated structures. The extracted struc-
tural correlation length grows with the packing fraction by a
power-law function with respect to a critical packing fraction
of ∼0.79. And the α-relaxation time of the system increases
with this correlation length by a power law, which implies
weaker-than-expected structural correlations before the glass
transition. We test and validate our method by measuring
the structural correlation length during the crystallization of
colloids at 2D before the hexatic phase transition, where the
growth of the structurally correlated clusters and diffusion
coefficients can be independently measured. The correlation
length extracted from the diffusion coefficient during crys-
tallization increases linearly with the size of crystallites as
well as the spatial correlation length of bond orientational
orders. The static correlation length increases exponentially
with the packing fraction as predicted by the KTHNY
theory [27–31].

The samples consist of a binary mixture of poly-N-
isopropylacrylamide (PNIPAM) particles confined between
two coverslips, forming a monolayer. The particle diameters
are 1.2 μm for large particles and 0.9 μm for small particles,
respectively, measured by dynamical light scattering (DLS) at
24 ◦C. The number ratio between the two species is tuned to
be ∼1.3 to frustrate crystallization at 2D. The packing fraction
is adjusted by changing the number density of the samples
while keeping the temperature constant at 24 ◦C. Each sam-
ple is equilibrated on the microscope stage for at least one
hour before being continuously imaged using standard bright
field microscopy at 60 fps. Depending on the sample packing
fraction, videos from 3 to 17 minutes are acquired so that the
long-time diffusion coefficients of the particles can be prop-
erly determined. The trajectories of all particles are extracted
using particle tracking software [32]. Diffusion coefficients
are determined by linearly fitting the long-time mean square
displacements (MSDs) of the particles using MSD = 4Dt . For
comparison, similar measurements are performed for mono-
dispersed samples before the hexatic stage of crystallization
at 2D.

As the packing fraction increases, the system becomes su-
percooled, characterized by the intermediate scattering func-
tion (ISF) with ISF = 1

N 〈∑i ei 2π
a (ri (t )−ri (0))〉 [33,34]. Here, a

is the first peak’s position of the radial distribution func-
tion g(r), ri(t ) is the position of particle i at time t , N is
the number of particles, and 〈· · · 〉 represents time average.
The ISFs are obtained after the Mermin-Wagner fluctuations
are removed using cage-relative displacements corrections
[35–37]. Figure 1(a) plots the measured intermediate scat-
tering function of the samples at different packing fractions.
The α-relaxation time τα is determined as the time interval at
which ISF drops to 1/e. Figure 1(b) plots the τα as a function
of the packing fraction. At low packing fractions, τα can be

FIG. 1. (a) Intermediate scattering functions (ISFs) at packing
fractions ranging from 0.273 to 0.724. The red dashed line is ISF =
1/e. (b) The alpha-relaxation time τα acquired from (a). The red
dashed line is an Arrhenius fitting. τα starts to deviate the Arrhenius
function and increases dramatically for packing fractions higher than
0.55, indicating that the system becomes supercooled.

well fitted to the Arrhenius function. For packing fractions
higher than 0.55, τα starts to deviate from the Arrhenius func-
tion and increases dramatically, a signature of supercooled
liquids [38,39].

Figure 2(a) plots the measured diffusion coefficients D for
both large and small particles at different packing fractions.
At low packing fractions, D can be well fitted by Eq. (1),
which suggests that the diffusion process can be described by
random collision models, with no significant spatial or tempo-
ral correlations. The measured diffusion coefficients become
considerably lower than theoretical predictions at the packing
fraction of the onset of the supercooled regime determined
by τα . Similar breakdowns of theoretical models for diffusion
coefficients have been reported in ellipsoidal and spherical
colloidal experiments by Li et al [40].

The slowing down of the diffusing dynamics can be at-
tributed to the emergence of correlated structures in the
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FIG. 2. (a) Measured (solid symbols) and theoretical (empty
symbols) diffusion coefficients for both large and small particles
as a function of packing fraction. The experimental measurements
deviate from theoretical predictions for packing fractions higher than
0.55 at the onset of the supercooled regime. Inset: Representative
mean square displacement curves at different packing fractions with
linear fitting for the long time MSDs (dashed lines). (b) Static cor-
relation length l for both the large and small particles as a function
of packing fraction. Solid lines are fit to a power law function(l ∝
(φ0 − φ)−γ ) for the experimental data with φ > 0.55, with γbig =
3.3 ± 0.83, φ0,big = 0.79 ± 0.03, and γsmall = 3.74 ± 0.59, φ0,small =
0.79 ± 0.02.

supercooled liquid. As the particles in a statically correlated
structure must move in unison before the structure relaxes, a
correlated cluster can be considered as a diffusing rigid body,
with no significant correlations to other clusters. Thus the ran-
dom collision condition is restored. The long time diffusion
behavior of the particles in the system can again be described
by Eq. (1). Accordingly, the mass of the diffusing particle m0

need to be replaced by the mass of the diffusing cluster meff ,
which is the total mass of the particles in the cluster, while
keeping A constant before and after entering the supercooled
regime (Abig = 1770 and Asmall = 2146). The introduction of

the effective mass affects the the binary collision friction term
ξB = ρσg(σ )

√
2πkBT m0 in Eq. (1). By replacing m0 with

meff , one obtains ξ ′
B = ρσg(σ )

√
2πkBT meff and

Dexp = kBT

Aξ ′
B(1 − S2) + ξs

. (2)

By fitting the experimental data to Eq. (2), the number of
particles in a correlated structure can then be estimated as
N = meff/m0, and a static correlation length l = √

N or l =
ξ ′

B/ξB,0, in the unit of particle diameters d0, where ξB,0 is
the theoretical friction from binary collision of uncorrelated
particles. This estimation of the correlation length l is based
on the assumption that the shapes of the correlated clusters are
compact at 2D, while studies have shown that such clusters
may be of fractal dimensions [24,41,42]. Thus our current
estimation represents the lower bound of the static length
scales, and it properly characterizes the monotonic increase
of the size of the correlated clusters, as the system progresses
towards colloidal glass transition.

Figure 2(b) plots the measured correlation lengths l as a
function of the packing fraction for both large and small parti-
cles. At low packing fractions, l is close to unity, indicating no
correlated structures in normal liquids. l starts to increase after
the system becomes supercooled, and the growth can be fitted
to a power-law function with the packing fraction φ, namely
l ∝ (φ0 − φ)−γ . Within the fitting errors, the fitting parame-
ters are the same for large and small particles, and suggest that
the correlation length diverges at a critical packing fraction
near φ = 0.79.

To test our hypothesis that the correlation lengths obtained
by fitting the diffusion coefficient D to Eq. (2) indeed reflect
the size of the structurally correlated clusters, we measure the
diffusion coefficients during the crystallization of colloids at
2D, where the size of the ordered structures can be indepen-
dently quantified. We employ temperature-sensitive PNIPAM
particles to tune the packing fraction of the sample from
normal liquid to complete crystallization. The analyses are
focused on the early stage of the crystallization process before
the transition between normal liquid and the hexatic phase
at 2D [27–31], when the long-time diffusion coefficients can
be obtained experimentally in reasonable time windows. It is
also in this stage when orientationally ordered clusters start to
emerge from an isotropically disordered liquid.

Similar to the disordered binary samples, the measured
diffusion coefficients deviate from theoretical predictions at
high packing fractions during crystallization, as plotted in
Fig. 3(a). The local crystalline order is characterized by the
bond orientational order parameter ψ6,i = 1

N

∑
j ei6θi j , where

N is the number of the nearest neighbors to particle i, and θi j

is the bond angle between particle i and its neighbor particle j
with respect to a fixed direction (x-axis in the current paper).
ψ6,i = 1 corresponds to perfect hexagonal local order. We
extract the length scale of crystalline clusters l6 from the spa-
tial correlation function of ψ6, defined as g6(r = |ri − r j |) =
〈ψ∗

6,i(ri )ψ6, j (r j )〉, which decays exponentially with particle
separations by g6 ∝ e−r/l6 before the hexatic phase [25]. We
also directly measure the average number of particles N in
domains formed by ordered particles. A particle is considered
ordered if three or more of its neighbors satisfy the criterion
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FIG. 3. Measured and theoretical diffusion coefficients for the
mono-disperse samples at different packing fractions. The measured
diffusion coefficients deviate from theoretical predictions for packing
fractions higher than 0.368. (b) Comparison between different length
scales, including l6 extracted from the spatial correlation function g6

and the size of ordered domains lN , as a function of l . Inset: the length
scales as a function of packing fractions in mono-disperse system
before the hexatic transition. The solid lines are fits to the KTHNY
prediction l, l6, lN ∝ e−b/

√
ρi−ρ with ρi = 0.53.

|ψ∗
6,iψ6, j | � 0.65 [43]. A static correlation length scale is

obtained as lN = √
N , in the unit of particle diameters. Fig-

ure 3(b) plots the static length scales extracted from the spatial
correlation functions and direct measurement of the size of
ordered domains, as a function of l determined from diffusion
coefficients. Both l6 and lN increase linearly with l , confirming
that l indeed reflects the growth of structurally correlated
clusters from isotropic liquids. All three correlation lengths,
l , l6, and lN increase with the packing fraction by e−b/

√
ρi−ρ as

predicted by the KTHNY theory [inset of Fig. 3(b)] [27–31].
We note that the correlation length l is less than both

l6 and lN in the crystallization experiments. This is because
the particles in smaller crystallites have faster dynamics than
those in larger ones and contribute more to the measured

FIG. 4. System relaxation time as a function of structural cor-
relation length l in bi-disperse system (log-log plot). Solid lines
represent power law fits (τα/τ0 ∝ lθ ) to the experimental data for
l > 1, θ = 1.86 ± 0.08.

diffusion coefficient. Thus, the diffusion coefficient reflects
an average domain size smaller than the mean size of all the
crystalline clusters in the system, an effect that also impacts
the correlation lengths obtained in binary fluids. Nevertheless,
the proportionality between the three correlation lengths sug-
gests that l indeed measures the growth of structural orders in
liquids.

In the crystallization experiments, the observation range is
limited by the size of the field of view and the dynamics in
the system. As the packing fraction continues to increase, the
crystalline domains soon percolate the field of view and the
dynamic slows down considerably, preventing proper mea-
surements of structural correlation lengths or the long-time
diffusion coefficients.

For the binary fluids, the system relaxation time increases
with the growth of the correlation length. Figure 4 plots the
system relaxation time τα/τ0 as a function of the correlation
lengths for a binary system, where τ0 is the α-relaxation time
at the lowest packing fraction. The relaxation times for both
the large and small particles follow a power law function
after the onset of the supercooled regime when l > 1. The
power index is 1.86 ± 0.08 for both species. The observed
powerlaw increase of the relaxation time with the structural
correlation length is not in agreement with the activated dy-
namics of RFOT models that predict an exponential increase
of τα . The observations in experiments imply that the ordered
structures formed in the supercooled liquids have weaker
static correlations than that expected by RFOT, and the relax-
ation barrier does not increase proportionally with the cluster
size.

The power law relation between τα and l can be understood
by dynamical facilitation models. As the packing fractions in
our experiments are limited by the need to measure the long
time diffusion coefficient, when the MSD reaches the linear
regime, most of our samples are below a crossover packing
fraction determined by mode coupling theories where the
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dynamics are dominated by dynamical facilitation [24,44].
The crossover packing fraction φMCT = 0.70, obtained by
fitting the τα to the packing fraction by τα ∝ (1/φ −
1/φMCT)γMCT , is close to the highest packing fraction of 0.724
in our experiments. Kinetically constrained theories [45–48]
predict a power law increase of τα with the characteristic
separations between defect (mobile) particles. Even though
the kinetically constrained models do not explicitly require
the nucleation of droplets as in the RFOT, the defect particles
can be viewed as separated by correlated domains.

In conclusion, we recover the universal diffusion relation
based on random collision models by associating the size
of structurally correlated domains to the effective mass of
diffusing particles in supercooled liquids, providing an indi-
rect way to probe the growth of static structural correlation

length scales in supercooled liquids or glasses without the
need for selectively pinning particles. The correlation lengths
thus obtained agrees qualitatively with theoretical models, and
the method is independently validated in the crystallization
of colloids at 2D. More information regarding the develop-
ment of dynamical heterogeneity in supercooled liquids may
be revealed if the distributions of the cluster sizes and the
corresponding relaxation times can be included in a refined
model.
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