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Broken time-reversal and parity symmetries in active spinner fluids imply a nondissi-
pative “odd viscosity,” engendering phenomena unattainable in traditional passive or
active fluids. Here we show that the odd viscosity itself can lead to a Hall-like transport
when the active chiral fluid flows through a quenched matrix of obstacles, reminiscent
of the anomalous Hall effect. The Hall-like velocity depends significantly on the spinner
activity and longitudinal flow due to the interplay between odd viscosity and spinner–
obstacle collisions. Our findings underscore the importance of odd viscosity in active
chiral matter and elucidate its essential role in the anomalous Hall-like effect.

active chiral matter | Hall-like flow | odd viscosity | collective behavior

Active chiral matter consists of self-driven circle swimmers and/or spinners (1, 2), which
are ubiquitous in nature and can be straightforwardly realized in the laboratory. Prominent
examples range from rotating microorganisms (3–8), to synthetic colloidal rotors (9–
18), to oscillating chiral grains (19–22). The active chiral systems are intrinsically out
of equilibrium and break both time-reversal and parity symmetries. Remarkably, a two-
dimensional active chiral fluid composed of interacting spinners has been recently shown
to support a spontaneous topologically protected edge flow (20–24) and to possess a
nondissipative momentum transport coefficient dubbed “odd viscosity” or “Hall viscosity”
(25–31). Due to these intriguing and unique features, the active spinner system is stirring
up fundamental theoretical interest.

As edge flow and odd viscosity are also important in electronic quantum-Hall systems
(32–38), the active spinner fluid and the electronic quantum-Hall fluids thus share some
fundamental physical features. Moreover, in analogy with the spin–spin and spin–orbital
couplings in electronic systems, the active spinners can similarly couple via interparticle
tangential interactions. As the active spinner fluid spontaneously breaks time-reversal
and parity symmetries without any externally applied field, it acts more like an active
counterpart of the anomalous Hall system (39–42), where the symmetries are broken by
magnetization and spin–orbit coupling, rather than the Hall system, where the symmetries
are broken by an external magnetic field. These apparent similarities inspired us to inquire
whether the active spinner fluid may exhibit a Hall-like flux when it is driven through
a matrix of impurities with quenched positions. The existence of such a flux would be
related to the anomalous Hall effect in ferromagnetic conductors carrying a longitudinal
current (43), where charge carriers create a Hall voltage by being forced toward the
transverse side of the conductor in the absence of a magnetic field. Despite great progress
on the anomalous Hall effect since its discovery (44), its understanding is still incomplete
(41–43) and physical analogies from the active chiral matter dynamics can add important
insights into the properties of these systems.

Here, by simulation and by analytical theory, we study transport behavior of a two-
dimensional (2D) active spinner fluid externally driven to flow past a matrix of frozen
obstacles that mimics the impurities in an anomalous Hall system. We find that the
active chiral fluid exhibits a distinct transverse Hall-like flux perpendicular to the external
driving force. The transverse transport occurs in both ordered and disordered obstacle
backgrounds, and its velocity depends significantly on the spinner activity as well as the
longitudinal flow. We unambiguously clarify that the Hall-like effect originates from the
odd viscosity-induced asymmetric stress distribution of the spinner fluid subjected to
nonuniform shear. Our results thus further establish an interesting and important link
between the active spinner fluid and the anomalous Hall system.

Results

A periodic box of dimension 130× 130 contains a matrix of fixed disk-shaped obstacles
of packing fraction ρob , defined with respect to the total system space, and an ensemble
of active spinners of packing fraction ρ, defined with respect to the obstacle free space
(Fig. 1). Each spinner is modeled as a disk driven by a constant torque of magnitude Td .
Interspinner and spinner–obstacle interactions are of a short-ranged repulsive potential,
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Fig. 1. Sketched spinner fluid crossing a matrix of frozen obstacles. The
spinners rotating counterclockwise are represented by the blue gears, flowing
under a uniform external force, and the gray smooth disks refer to the fixed
obstacles.

U (r) = 4ε
[(

σs

r

)48 − (
σs

r

)24]
+ ε for r < 21/24σs , with the

diameter σs = 2 and ε= 1. Additionally, different spinners also
couple tangentially via a friction realized by the bounce-back
collisions (22, 45) (SI Appendix). Unless specifically stated, the
obstacles are frictionless. A uniform external force G is applied to
the spinners that generates a longitudinal flow in the y direction.
The spinner dynamics evolve via the Langevin equation, with the
temperature kBT = 1, and translational and rotational friction
coefficients γs = 100 and γr =

1
3σ

2
sγs (see SI Appendix for full

simulation details).

A. Simulation Results in Square Lattice Matrix of Obstacles.
We first consider a square lattice matrix of obstacles with
ρob = 0.074 (lattice constant 6.5). After a transient relaxation, the
randomly positioned spinners rotating counterclockwise develop
a stationary transverse flux in the x direction, in addition to
the downward longitudinal flow driven by the external force, as
shown in Fig. 2 (see also the trajectories in SI Appendix). The
transverse flow velocity increases with the driving torque and also
with G = |G| in the parameter range under study. On the other
hand, the longitudinal flow increases linearly with G as expected,
showing only a slight increase with Td . Moreover, for clockwise
rotating spinners, the transverse flow is reversed (SI Appendix).
One can speculate that the interparticle friction plays a crucial role
in the emergence of the Hall-like flux, since otherwise the spin
would completely decouple from other degrees of freedom. This
becomes clear by noting that the frictionless spinner fluid exhibits
a perfect symmetry with respect to the obstacles in the x direction.

A stationary Hall-like flow means that the active chiral fluid
must experience a transverse driving force along the x direction,
which can only be exerted by the fixed obstacles. An intuitive ex-
planation of the transverse transport can be based on microscopic
collisions, as sketched in Fig. 3A. Specifically, a longitudinal flow
of spinners crossing a smooth obstacle suffers from a local shear
roughly symmetric with respect to the obstacle center, where the
spinner at the top of the obstacle moves downward more slowly

than its left and right neighbors, due to its direct interaction with
the obstacle. In this case, the collisions on the top side of the
obstacle are much stronger than those on the bottom side. Such bi-
ased interparticle collisions, coupled to the counterclockwise spin
and interparticle friction, affect the spinner–obstacle interactions
in a left–right asymmetric manner (Fig. 3A), resulting in a net
transverse force on the spinner fluid directed to the right.

In the following, we theoretically demonstrate that the spinner
transverse flow arises exclusively from the odd viscosity. The odd
viscosity is allowed in the 2D spinner fluid because time-reversal
and parity symmetries are broken due to unidirectional spin (25,
29, 46, 47). It depends on the spinner activity and is an odd
function of the spinner chirality (25, 26, 31). When shearing the
fluid in one direction, the odd viscosity induces a momentum
transfer in the perpendicular direction. It has been found that the
odd viscosity can contribute a correction to the Hall conductivity
in the electronic Hall systems (38, 48–53).

B. Hydrodynamic Theory. To clarify the mechanism of the Hall-
like transport, we use a 2D continuum hydrodynamic theory
developed for the active spinner fluid (20, 25, 26). For simplicity,
we consider an incompressible, ∇ · v = 0, unconfined spinner
fluid flowing around a single, fixed obstacle. The momentum of
the spinner fluid obeys the Navier–Stokes-type equation,

�(∂t + v · ∇)v =∇ · σ − Γv + g, [1]

with � the mass density; Γ the environment translational friction
coefficient, which is related to its single-particle counterpart
by Γ = γsn (n = 4ρ/πσ2

s the spinner number density); and
g =Gn the external force density. Here, the stress tensor, σ, has
the form

σ =−pI+ η[∇v + (∇v)T ] + ηRε(2ω − Ω)

+ ηo(∇v∗ +∇∗v), [2]

with p the pressure, η the shear viscosity, ω the spin field,
Ω= (∇× v) · ẑ the vorticity, ε the Levi–Civita tensor, and
v∗ = ε · v. In the stress tensor, the third term refers to the
antisymmetric frictional stress that couples the spin to the
flow via the rotational viscosity ηR, and the last term to the
stress contributed by the dissipationless odd viscosity ηo that
produces a stress normal to a shear flow. The angular momentum
conservation is described as

I (∂t + v · ∇)ω =−Γrω − 2ηR(2ω − Ω) +D∇2ω + τ , [3]

with I the moment-of-inertia density, Γr = γrn the rotational
friction coefficient from environment, τ = Tdn the torque
density, and D the translational diffusion coefficient that is
negligible due to the semidilute condition.

From Eqs. 1–3, together with ∇ · v = 0 and for low Reynolds
numbers, the steady-state Stokes-type equation reads

0 =−∇p + η′∇2v + ηo∇Ω− Γv + g, [4]

with η′ = η + ηRΓr

Γr+4ηR
. This steady-state equation in a polar

coordinate system, v = vr êr + vϕêϕ, needs to be solved with
the following hydrodynamic boundary conditions: 1) σϕr |r=R =

η(2
∂ϕvr
r − 2

vϕ
r +Ω)− ηR(2ω − Ω)− 2ηo∂rvr = 0 (tangen-

tial stress vanishing on the frictionless obstacle surface, R = σs ),
2) vr |r=R = 0, and 3) v|r=∞ = g/Γ.

To obtain the velocity field of the chiral active fluid, the Stokes
equation is simplified using its linearity. The solution of the
present equations is a linear superposition of solutions of two
simpler problems: 1) the fluid subjected only to the torque τ and
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Fig. 2. (A and B) Transverse Hall-like velocity of spinner fluid crossing a square lattice matrix of obstacles as a function of (A) the external force with Td = 10
and (B) the driving torque with G = 1, for three different spinner packing fractions. (C and D) The corresponding longitudinal flow velocity as a function of (C) G
and (D) Td . The symbols and dashed lines correspond to the simulation results and theoretical predictions, respectively.

2) the fluid subjected only to the driving force g. Thus, from Eq. 4,
together with the boundary conditions, a lengthy calculation (see
SI Appendix for the full theoretical derivation) yields the steady-
state velocity field

vr =− g

Γ

(
1 +

E0

r ′2
− C0δ

2 K1(r
′)

r ′

)
sin(ϕ)

+
g

Γ

(
W0

r ′2
−D0δ

2 K1(r
′)

r ′

)
cos(ϕ), [5]

vϕ = F0τK1(r
′)− g

Γ

(
1− E0

r ′2
− C0δ

2K′
1(r

′)

)
cos(ϕ)

+
g

Γ

(
W0

r ′2
+D0δ

2K′
1(r

′)

)
sin(ϕ). [6]

Here, g = |g|, δ2 = η′/Γ, K1(r
′) is the first-order Hankel

function of imaginary argument with r ′ = r/δ, and K′
1(r

′) =
∂K1/∂r

′. The definitions of the coefficients C0, D0, E0, F0,
and W0 (which depend on the viscosities, the friction coefficient,

A B

Fig. 3. (A) Sketch of a microscopic explanation of the transverse transport of the spinner fluid passing frictionless obstacles. The upper left and lower right
parts respectively correspond to the interspinner collisions occurring on the left and right upper sides of the obstacle. The green arrow represents the local
longitudinal flow velocity, while the red dashed arrow refers to the friction from the interspinner collisions. (B) Representative flow field of the incompressible
chiral active fluid passing a smooth obstacle. In the calculation, G = 1.0, Td = 40, and ηo = −21.5 correspond to the spinner fluid of ρ = 0.6 in the simulation.
The color bars represent the velocity magnitude, and the middle white circle is the obstacle.
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A

C

B

D

Fig. 4. (A and B) Theoretical radial stress distribution of the chiral active fluid across a smooth obstacle with (A) and without (B) the odd viscosity. Here, ρ = 0.6,
Td = 40, G = 1, and the constant hydrostatic pressure p0 is omitted. (C and D) The transverse force on an obstacle in a square lattice matrix with ρob = 0.074
exerted by the spinner fluid as a function of (C) G with Td = 10 and (D) Td with G = 1. The symbols and dashed lines refer to the simulation and theory (Eq. 8),
respectively.

and R) are presented in SI Appendix. The coefficients have the
following important features: C0 and E0 are even functions of
ηo , while D0 and W0 are odd; while F0 is independent of ηo .
From Eqs. 5 and 6 with the viscosities determined by independent
simulations (SI Appendix), the velocity field of the spinner fluid
passing a smooth obstacle is directly determined, as plotted in
Fig. 3B.

Furthermore, we calculate the mean transverse and longitudi-
nal velocities of the spinners through a square matrix of obstacles,
by averaging the analytic velocity field (Eqs. 5 and 6) around the
single obstacle over a square region that exactly corresponds to
the elementary cell of the obstacle matrix in the simulation (see
SI Appendix for the details). In this calculation, we have implicitly
assumed that the flow fields around different obstacles in the simu-
lation are independent, as the influence of obstacles on the driving
longitudinal flow decays fast due to the strong environmental
friction. Fig. 2 indicates that the theoretical calculations are fully
consistent with the simulations.

By inserting the flow velocity Eqs. 5 and 6 into Eq. 4, we obtain
the steady-state pressure

p =
W0cos(ϕ)− E0sin(ϕ)

r ′
δg + ηoΩ+ p0, [7]

with p0 the pressure at infinity. Due to the frictionless obstacle, the
transverse flow is generated only by the radial stress, σrr =−p −
2ηo(

vϕ
r − ∂ϕvr

r − Ω
2 ) + 2η∂rvr , and the radial stress distribu-

tion can be straightforwardly calculated by substituting Eqs. 5–7
into σrr , as plotted in Fig. 4 A and B. The result indicates that the
existence of the odd viscosity leads to an asymmetry of the radial
stress distribution with respect to the y axis across the obstacle
center, which is absent for ηo = 0. It is the asymmetric radial stress
that generates the Hall-like transport. Furthermore, by integrating

the radial stress over the obstacle surface, the transverse force on
the obstacle exerted by the spinner fluid is obtained as

Fx =−πδ2W0g + 2πηog

(
K2(R

′)δ2C0

Γ
− 2E0

ΓR′2

)

+ 2πηg

(
K2(R

′)δ2D0

Γ
− 2W0

ΓR′2

)
, [8]

with R′ = R/δ. The reaction force to Fx is then just the driving
force of the transverse Hall-like flow and vanishes when g = 0 or
ηo = 0, as the coefficients D0 and W0 are zero for ηo = 0 (no
matter what the values of η and ηR are). The reversal of 〈vx 〉 for
the clockwise spinners (opposite ηo) arises from the fact that D0

and W0 are odd functions of ηo , while C0 and E0 are even. The
semiquantitative agreement between Fx obtained by simulation
and predicted from Eq. 8 (Fig. 4 C and D) implies that the odd
viscosity is essential for the Hall-like transport.

Although the hydrodynamic theory properly captures the es-
sential features of the Hall-like transport of the spinner fluid,
it contains several important approximations: First, the discrete
spinner system is regarded as a continuum fluid; second, the
compressible spinner fluid is assumed to be incompressible; third,
the inertial term is not taken into account; and last but not least,
the correlations of spinner density and flow velocity induced by
multiple obstacles are neglected owing to the strong environment
friction. These approximations constitute the main sources of the
quantitative difference between the theory and simulation. Partic-
ularly, the compressibility and the inertial effect both increase with
the external driving force. In addition, due to the flow correlation,
the upper obstacles in the matrix can effectively screen the lower
ones from the longitudinal flow, which also becomes prominent
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A B

C D

Fig. 5. (A) Transverse velocity of the spinners as a function of the packing fraction of the obstacles on a square lattice, with G = 1 and Td = 10. (B and C) The
ratio of the transverse to longitudinal flow velocities as a function of (B) Td with G = 1 and (C) G with Td = 10, in the square (squares), triangular (triangles),
and disordered (stars) matrices. Here, for disordered obstacles, 16 different matrix configurations were used for averaging the flow velocity. (D) The ratio of
the transverse to longitudinal velocities versus the degree of disordered deviation from the perfect square lattice, with Td = 40 and G = 1. In B–D, ρob = 0.074
remains fixed. The blue and red symbols correspond to ρ = 0.6 and 0.38, respectively.

for larger G . Consequently, the hydrodynamic theory is expected
to be more appropriate for smaller G .

C. Obstacle Matrix Effects. We now investigate the effect of the
impurity packing fraction on the transverse flow in the square
matrix, keeping the spinner packing fraction unchanged (with
respect to the obstacle free space). Fig. 5A shows that the transverse
velocity significantly increases with ρob in the dilute or semidilute
regime. This is simply because more obstacles can result in more
fluid regions subjected to a local nonuniform shear and hence
larger transverse driving force.

Further, we consider different matrix structures, including a
triangular lattice matrix and a disordered matrix (constructed
by randomly placing the obstacles in the simulation box with
the interobstacle separation larger than 2σs ). The ordered or
disordered matrix may generally mimic the impurity background
in electronic anomalous Hall systems. To better manifest the
efficiency of the Hall-like transport in different matrices, Fig. 5
B and C plots the ratio of the transverse to longitudinal flow
velocities (corresponding to the Hall angle). All matrix types
invariably exhibit a significant Hall-like flux along the x axis,
implying that the detailed nature of the impurity matrix is not
essential for the emergence of the transverse transport. As long as
there are frozen impurities creating a local shear in the spinner
fluid, the odd viscosity will generate a nonzero transverse flow,
thus constituting a very robust effect. Nevertheless, the matrix
structure indeed has a quantitative influence on the magnitude of
the Hall-like transport. From Fig. 5 B and C, it is clear that for low
ρ the Hall-like transport hardly depends on the matrix structure,
since in the dilute fluid, having low viscosities, the correlations of
velocities and densities induced by neighboring obstacles are weak.

While, for high ρ, the Hall-like transport in the disordered matrix
is weaker than those in the square and triangle lattices. It can be
reasonably speculated that in the dense fluid with high viscosities,
the velocity field and density distribution around neighboring
obstacles strongly correlate, so that different obstacle structures
could have different transport efficiencies. Comparing with the
periodic ordered lattices, the obstacles in the disordered matrix
are randomly distributed in space, where local dense regions
of obstacles strongly hinder the spinner flow while local dilute
regions cannot effectively shear the spinner longitudinal flow. As a
result, such local dense and dilute regions in the disordered matrix
are adverse to driving the transverse transport.

Furthermore, to study the dependence of the velocity ratio on
the degree of disorder of the obstacle matrix, we construct the
matrices by randomly quenching the fluctuating obstacles that are
constrained to a perfect square lattice through a harmonic spring
potential with a spring constant k . In this situation, the degree
of disorder of the obstacle matrix increases with reducing k . The
simulation result in Fig. 5D indicates that the Hall-like transport
weakens as the degree of disorder increases, which is consistent
with the above speculation.

D. Compressibility Effects and Antisymmetric Stress. The hy-
drodynamic calculation shows that the Hall-like transport of
the incompressible spinner fluid originates exclusively from the
odd viscosity. Nevertheless, the spinner fluid in the simulation
is not strictly incompressible, so that its density distribution
is nonuniform around the obstacle. In this case, the antisym-
metric stress from the rotational viscosity (density dependent),
ηR(r)ε(2ω − Ω), induces nonsymmetric edge flows at the top
and bottom surfaces of the obstacle (31), thus seemingly also
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causing a transverse flow. However, it can be shown that the
position-dependent antisymmetric stress does not contribute to
the transverse driving force even in a compressible spinner fluid,
since the tangential stress vanishes at the surface of the frictionless
obstacle [σϕr (R) = 0] and the antisymmetric stress occurs only
in σϕr . On the other hand, for a rough obstacle with a no-slip
boundary, the tangential stress is nonzero at the obstacle surface,
such that ηR(r)ε(2ω − Ω) does play a role and contributes to
a transverse force, actually overwhelming the contribution from
the odd viscosity, as demonstrated by the simulation of the rough
obstacles in SI Appendix.

We also point out that although the compressibility does
not play a fundamental role for the emergence of the Hall-
like transport, it does quantitatively affect the transverse flow, as
shown by the simulations with softer interparticle steric repulsions
(SI Appendix).

Discussion

Similarity with Anomalous Hall Effect. Besides the edge flow,
odd viscosity, and spin–spin and spin–orbital couplings, the
emergence of transverse transport without magnetic field further
strengthens the similarity between the active spinner fluid and
the electronic anomalous Hall systems. Particularly, based on
the hydrodynamic framework developed for correlated electron
systems (48, 54, 55), it may establish a possible mapping between
the present finding and the anomalous Hall effect.

For a 2D anomalous Hall system with the magnetization M,
the hydrodynamic theory (55) includes two different terms that
can give rise to the transverse flow:∼v ×M and ηo∇2v × z. The
former is analogous to the common Lorentz force (M corresponds
to an effective magnetic field), which plays a universal role; while
the latter is exactly equal to the odd viscosity term in the active
spinner fluid. Therefore, in the hydrodynamic framework the
odd viscosity term connects the transverse transport of the chiral
active fluid to the anomalous Hall effect. In 2D systems, the
odd viscosity arises from the breaking of time-reversal and parity
symmetries, which are induced separately by the magnetization in
anomalous Hall systems (magnetic field in normal Hall systems)
and by the particle spin in the active spinner fluid. In this sense,
the self-driven torque field corresponds to an effective magnetic
field in the chiral active fluid. Moreover, the odd viscosity increases
separately with the magnetic field in the Hall system, while
increasing conjointly with the spin angular velocity in the spinner
fluid, further strengthening the correspondence between the self-
driven torque field and the effective magnetic field.

Besides the absence of the Lorentz-type force, another impor-
tant difference between the Hall effect and the transverse transport
of the spinner fluid lies in the nature of the environment where
the odd viscosity term plays a role. In electronic Hall systems, the
odd viscosity usually contributes to the Hall flow near the no-slip–
like channel walls, where the longitudinal flow is inhomogeneous,
rather than around the quenched frictionless impurities. While,
for the chiral active fluid, the odd viscosity plays a role both around
the microscopic obstacles and near the system boundary walls
(SI Appendix).

Comparison with Transverse Motion in Other Systems Due
to Odd Viscosity. The charge-neutral confined polyatomic gases
under an external magnetic field also exhibit transverse transport

due to the odd viscosity (56, 57). However, one should bear in
mind that the polyatomic gases are fundamentally different from
the present chiral active fluid in the following aspects: First, the
transverse flow of the polyatomic gases needs an external magnetic
field, similar to the normal Hall effect, in stark contrast to the case
of the chiral active fluid. Second, the spinner fluid is active; while
the polyatomic gases are passive systems, where the gas molecule
does not experience any self-propulsion. Third, in the polyatomic
gases, the transverse force is generated by the no-slip boundary
walls of the channel instead of the frictionless impurities with a
size comparable to the particle. And finally, the odd viscosity of
the polyatomic gas is very small, with the ratio of the odd to shear
viscosities ηo/η ∼ 0.001; while ηo/η ∼ 1 in the spinner fluid,
so that the active spinner fluid may exhibit a Hall-like transport
orders of magnitude stronger than the passive polyatomic gases.

A very recent theoretical work (58) predicts that a no-slip pas-
sive disk, moving laterally in a quasi-2D compressible traditional
fluid with an assumed odd viscosity, experiences a lift force that
vanishes in the incompressible limit. This prediction does not
contradict our results, since the quenched obstacles in our system
are frictionless. Additionally, it would be interesting to study also
the odd viscosity effect on the circle swimmer transport, even
if the circle swimmer system does appear to be more complex
than the spinner fluid because of the self-propelled translation
(15, 59). Even an isolated circle swimmer experiences a transverse
rectification in a symmetric potential (60). Such a single-particle
effect may also be the main reason for the transverse motion
of a passive probe driven through a circle swimmer fluid (61).
Therefore, identifying the odd viscosity contribution, if any, to the
transport in circle swimmer systems remains an open question.

Conclusion

Active spinner fluid exhibits an anomalous Hall-like effect when
it is driven to flow through a matrix of obstacles. The transverse
mass transport arises exclusively from the odd viscosity effect
in the spinner fluid under local nonuniform shear. This finding
extends also our understanding of the role of odd viscosity in
electronic Hall systems, where it corrects only the Hall con-
ductance (38, 48–51, 53, 55). Our results thus highlight the
fundamental importance of odd viscosity in active chiral matter
and are experimentally verifiable by using colloidal spinners or
macroscopic granular spinners.

Data, Materials, and Software Availability. All study data are included in the
article and/or SI Appendix.
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