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Prior studies have revealed that nonzero odd viscosity is an essential property for chiral active fluids. Here we
report that such an odd viscosity also exists in suspensions of non-active or non-externally-driven but chirally-
shaped particles. Computational simulations are carried out for monolayers of dense ratchets in simple shear
and planar extensional flows. The contact between two ratchets can be either frictionless or infinitely-frictional,
depending on their teeth and sliding directions at the contact point. Our results show that the ratchet suspension
has the intermediate shear/extensional viscosity as compared with the suspensions of smooth and gear-like
particles. Meanwhile, the ratchet suspensions show nonzero even and odd components of the first normal stress
coefficient, which indicates the mixed feature of conventional complex fluids and chiral viscous fluids.

I. INTRODUCTION

Chiral active fluids are typical nonequilibrium systems con-
sisting of self-spinning constituents [1–3]. In recent years,
they have attracted increasing attention because of intrigu-
ing dynamics and collective behaviors such as turbulence [4],
phase separation [5–7], surface wave [2, 8], and unidirectional
edge current [9–13]. One essential property to explain such
behaviors is the so-called Hall or odd viscosity, which stems
from the inherent breaking of parity and time-reversal symme-
tries and does not produce any entropy or heat as dissipative
viscosity [14, 15]. Prior work on the odd viscosity ranges from
phenomenological to topological and rheological scopes. In
most of such work, the self-spinning constituents are suffi-
ciently small, so that the chiral active fluids are treated as
continuum phases. Then their behaviors can be described by
hydrodynamic equations with an additional assumed odd term,
where the odd viscosity physically characterizes the orthog-
onal stress response of the system to the imposed flow (i.e.,
eigendirections of the rate of deformation tensor) [16–22].

In the field of rheology, the first normal stress difference,
as one of viscometric functions, is widely studied [23–25]. It
also describes the orthogonal stress response to the imposed
flow, but is commonly discussed for conventional complex flu-
ids such as viscoelastic fluids and dense suspensions. We have
clarified the relation between the odd viscosity and the first
normal stress difference in the recent work [7]. In general, the
latter can be decomposed into even and odd components. The
even one results from the microstructures constructed by in-
teracting fluid constituents, whereas the odd one corresponds
to the odd viscosity when the parity and time-reversal symme-
tries of the system break. Our work reported that both of such
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even and odd components were nonzero for chiral active sus-
pensions, which indicated the mixed feature of conventional
complex fluids and chiral viscous fluids [7]. Nevertheless, the
understanding of rheology of chiral active suspensions is still
lacking. Another open question is whether the odd viscosity
only exists in active fluids (with self-spinning or externally-
driven constituents) or not.
In this paper, we examine the odd viscosity in passive sus-

pensions composed of chiral particles with finite size, by car-
rying out computational simulations in both simple shear and
planar extensional flows [26]. The chiral particles are modeled
by ratchets with unidirectional (clockwise or anticlockwise)
teeth, which are supposed to undergo asymmetric contact in-
teractions. This means the contact can be either frictional or
frictionless depending on the teeth and sliding directions of the
particles. In section 2, we detail the main simulation methods,
including the modeling of particles dynamics and background
flows, simulation parameters and conditions, and rheological
characterization. Section 3 presents the simulation results in
terms of average contact number of the particles, reorientation
angles, and even and odd components of essential rheological
coefficients.

II. SIMULATION METHOD

A. Particle dynamics

For N spherical particles that are suspended in liquid sol-
vent, they experience forces and torques due to Stokes drag
(FS andTS), hydrodynamic inter-particle interactions (FH and
TH), and frictional contact (FC and TC). When the flow time
scale is shorter than the Brownian time scale, we can neglect
both inertia and thermal fluctuations. As a result, the force
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and torque balances on particle i (i = 1, . . . , N ) are given by

FS,i + FH,i +
∑
j 6=i

FC,ij = 0, (1)

TS,i + TH,i +
∑
j 6=i

TC,ij = 0. (2)

Here, the Stokes force and torque are given by

FS,i = −6πη0a (Ui −U∞(xi)) , (3)
TS,i = −8πη0a

3 (Ωi −Ω∞(xi)) , (4)

where η0 represents the solvent viscosity, a the particle ra-
dius, Ui and Ωi the velocity and angular velocity of particle
i, respectively, andU∞(xi) and Ω∞(xi) the velocity and an-
gular velocity of the background fluid at particle position xi,
respectively. For the inter-particle hydrodynamic interactions,
we assume that they only arise from lubrication effects. This
is justified for dense suspensions subjected to contact forces,
where the far-field or many-body hydrodynamic interactions
play minor roles. The 6N lubrication force and torque vectors
(FH ≡ {FH,1, . . . ,FH,N} and TH ≡ {TH,1, . . . ,TH,N}) are
coupled with the 6N particle velocity and angular velocity
vectors (U ≡ {U1, . . . ,UN} and Ω ≡ {Ω1, . . . ,ΩN}) in the
form of(

FH
TH

)
= −RL ·

(
U −U∞(x)
Ω−Ω∞(x)

)
+ R ′L : E∞, (5)

where RL and R ′L are the configuration-dependent resistance
matrices for the hydrodynamic lubrication, and E∞ denotes
the rate-of-strain tensor [27]. In the current work, the resis-
tance matrices are simply described by the leading terms of
the pairwise short-range lubrication interaction [28].

For two particles in contact, their interaction is described by
a simple spring-and-dashpot model [29, 30], where the normal
and tangential components of the contact force are given by

F
(n)
C,ij = knhijnij + γnU

(n)
ij , (6)

F
(t)
C,ij = ktξij . (7)

Here, kn and kt are the normal and tangential spring constants,
respectively, hij and nij represent the surface separation and
center-to-center unit vector between the particles, respectively,
γn is the damping constant, U (n)

ij ≡ nijnij · (Uj −Ui) is
the relative normal velocity, and ξij denotes the tangential
stretch vector. The contact forces fulfill Coulomb’s friction
law |F (t)

C,ij | ≤ µ|F (n)
C,ij | with the static friction coefficient µ.

In addition, we note that ξij = 0 in the absence of contact
(hij > 0). After the particles contact at time t0 (hij ≤ 0),
the tangential stretch vector evolves as ξij(t) =

∫ t

t0
U

(t)
ij dt,

with the relative tangential velocity defined by U (t)
ij ≡ (I −

nijnij) · [Uj−Ui− (aΩi +aΩj)×nij ]. Then the tangential
contact torque in Eq. (2) is obtained by

TC,ij = anij × F (t)
C,ij . (8)

B. Simulation parameters and conditions

Our work takes into account four different types of parti-
cles, i.e., ratchet-like particles with clockwise teeth (ratchet
I), ratchet-like particles with anticlockwise teeth (ratchet II),
smooth particles, and gear-like rough particles (see Fig. 1 (a)).
For the smooth and gear-like particles, we assume their con-
tacts are frictionless (i.e., µ = 0) and infinitely-frictional (i.e.,
µ = ∞), respectively. However, for ratchet-like particles, we
assume the contact is frictionless/infinitely-frictional when a
particle slides parallelly/anti-parallelly with respect to its tooth
direction at the contact point.
Suspensions of the particles of the same type are exposed to

constant simple shear and planar extensional flows, which are
constructed with the Lees–Edwards boundary condition [31]
and Kraynik–Reinelt periodic boundary condition [26, 32],
respectively. The velocity field of the simple shear flow can
be expressed as U∞(x) = Ω∞ × x + E∞ · x. When the
shear rate γ̇ is constant, we have the nonzero elements U∞x =
γ̇y, Ω∞z = −γ̇/2, and E∞xy = E∞yx = γ̇/2. For the planar
extensional flow, on the other hand, the velocity field is given
by U∞(x) = E∞ · x and a constant extensional rate ε̇ leads
to the nonzero elements U∞x = ε̇y, U∞y = −ε̇x, and E∞xy =
−E∞yx = ε̇.
Simulations are carried out for N = 3000 bidisperse parti-

cles (with radii a and 1.4a and with equal areal fractions) that
are constrained in a monolayer (x-y plane). The constants γ̇
and ε̇ are taken to be positive. We set kn and kt (only for the
cases of µ =∞) to sufficiently large values that keep both the
maximum overlap and tangential displacement smaller than
5% of the particle radius. The particle areal fraction varies
in the range of 0.3 ≤ φ ≤ 0.75. For each set of simulation
conditions and parameters, five parallel runs are performed
starting from different random initial configurations.

C. Rheological characterization

The stress tensor of passive suspension can be obtained as

σ = 2η0E∞ − 1
V

∑
i>j

rij (FH,ij + FC,ij) , (9)

where V and rij represent the total volume of the suspension
and center-to-center vector between particles i and j, respec-
tively. According to the theoretical framework discussed in
reference [33], the stress tensor in two-dimensional systems
can be decomposed in terms of basis tensors as

σ = −pI + ṡ
(
ηD̂ + λĜ + ζÂ

)
, (10)

where p represents the pressure (including the isotropic stress
due to contact forces), I the identity tensor, ṡ (= γ̇ or 2ε̇) the
flow rate, and λ and ζ the non-dissipative response function
and rotational viscosity, respectively. The basis tensors are de-
fined as D̂ ≡ eexteext− econecon, Ĝ ≡ eextecon + econeext,
and Â ≡ eextecon−econeext, where eext and econ are the unit
vectors for the extension and contraction axes of the imposed
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FIG. 1. (a) Schematic of four particle models: ratchets I (with clockwise teeth), ratchets II (with anticlockwise teeth), smooth particles,
and gear-like particles. When two ratchets tangentially contact and and their teeth at the contact point are anti-parallel and parallel to their
relative velocity, we assume their interactions are frictionless (µ = 0) and infinitely-frictional (µ = ∞), respectively. The smooth and gear-like
particles (for contrast only) experience zero and infinite friction, respectively. (b) Schematic of stress components and corresponding basis
tensors. The black arrows indicate the stress directions, whereas the orange lines and arrows represent the embedded extensional flow including
the contraction (vertical) and extension (horizontal) axes.
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FIG. 2. (a) Average contact number Z as a function of particle areal fraction φ for various particle models. Error bars are not shown
because they are smaller than the symbols. (b) Schematic of contact interaction between ratchets in the dense limit, where frictionless and
infinitely-frictional contacts emerge simultaneously. Here U1, U2, and U3 denote the velocities of three contacted particles, whereas µ1−2 and
µ2−3 represent the static friction coefficients for particles 1 and 2 and particles 2 and 3, respectively. (c) Representative snapshots of force
chain distribution in simple shear flows for particle areal fraction φ = 0.65 and various particle models. Inserts denote the particle type and
the velocity gradient of the simple shear flow.

flow. We not that the basis tensors are orthogonal to each
other and their corresponding stress components are shown in
Fig. 1 (b). Besides, for suspensions without self-spinning ele-
ments, as in the current work, the term with ζ can be dropped.
Then the rotation of principal axes of σ in the flow plane

with respect to those of D̂ is quantified by the reorientation
angle

θ ≡ arctan
[
λ/
(
η +

√
η2 + λ2

)]
, (11)
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FIG. 3. (a) Relative shear viscosity η/η0 and (b) ratio of non-dissipation response function to shear viscosity λ/η and corresponding
reorientation angle θ as a function of particle areal fraction φ for various particle models. (c) Even and odd components of the ratio λ/η as a
function of φ for ratchet particles. (d) Scaled first normal stress coefficient as a function of φ for various particle models. In the figures, error
bars are not shown because they are smaller than the symbols.

which is proportional to the ratio λ/η, or equivalently,
N1/σxy [33]. Here the first normal stress difference, N1 ≡
σxx − σyy , is one typical signature indicating the presence
of elasticity in complex fluids [25, 34]. It can alternatively
be characterized through the first normal stress coefficient Ψ1
defined by

Ψ1 ≡
N1

|γ̇|
= γ̇

|γ̇|
λ. (12)

However, when planar extensional flows are imposed, λ does
not depend on the sign of ε̇ and the characterization in terms
of Ψ1 is unnecessary. Therefore, we only study the non-
dissipative response functionλ for the planar extensional flows.
In order to further analyze the effect of shape chirality on any
quantity Λ of interest, we decompose it into the even and odd
components as

Λeven ≡
1
2 [Λ(ṡ) + Λ(−ṡ)] , (13)

Λodd ≡
1
2 [Λ(ṡ)− Λ(−ṡ)] . (14)

WhenΛ = Ψ1/2, the odd componentΛodd corresponds to the
odd viscosity [7].

III. RESULTS

For dense suspensions, both simple shear and planar ex-
tensional flows can give rise to particle contacts along the

contraction axis. The resultant particle force chains (or net-
works) and microstructures generate profound influences on
the macroscopic rheology of the suspensions [35, 36].
Here, we first focus on the simulations of the simple shear

flow and estimate the average contact number Z for various
particle types and areal fractions (see Fig. 2 (a)). For low areal
fractions (φ ≤ 0.5), it is observed that Z < 1 and the curves
of ratchets I and II are in accordance with the curves of smooth
and gear-like particles, respectively. Increasing the areal frac-
tion leads the curves of ratchets I and II to coincide with inter-
mediate Z values as compared with those for the frictionless
and gear-like particles. Such a result is expected, because, at
low areal fractions, particles get into contact with one neigh-
bor due to the applied shear flow. The unique contact mode
is referred to Fig. 1 (a) (left column for each particle type),
where the same friction coefficients are obtained between the
ratchets I and smooth particles and between the ratchets II and
gear-like particles. However, for φ ≥ 0.6 the average contact
number increases to Z > 1. Being associated with the rep-
resentative snapshots of inter-particle force chains, as shown
in Fig. 2 (c), we find that multi-particle contacts are dominant
throughout the suspensions. In this case, both the frictionless
and infinitely-frictional contacts appear between the ratchet
particles (see Fig. 2 (b)). Especially for higher areal fractions,
the numbers of these contacts become similar. Therefore, the
behavior in Fig. 2 (a) is reasoned.
Figure 3 (a) shows the relative shear viscosity as a function

of φ for different suspensions. Because the inter-particle con-
tact plays a decisive role, the curves of relative shear viscosity
show similar shapes with those presented in Fig. 2 (a). For the
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FIG. 4. (a) Average contact numberZ, (b) Relative extensional viscosity η/η0, and (c) ratio of non-dissipation response function to extensional
viscosity λ/η and corresponding reorientation angle θ as a function of particle areal fraction φ for various particle models. (d) Even and odd
components of scaled non-dissipation response function λ/(2η0) as a function of φ for ratchet particles. In the figures, error bars are not shown
because they are smaller than the symbols.

gear-like particles, the shear viscosity dramatically increases
at φ = 0.75 because of the proximity to the frictional jamming
point. By comparing the relative shear viscosities between the
ratchets and the other particles, we observe the former ones
are in the intermediate values and still keep distance from the
jamming state throughout the areal fraction studied.

Figure 3 (b) shows the ratio of non-dissipative response
function to shear viscosity λ/η, or equivalently, N1/σxy , and
the corresponding reorientation angle θ as a function of φ for
various particle types. In the figure, the curves for the friction-
less and infinitely-frictional particles agree with the results in
the prior work [34, 37]. However, the curves for the ratchets
I and II are not according, which indicates the essential role
of particle chirality on determining the reorientation angle. In
order to give a further insight, we employ Eqs. (13) and (14) to
decompose λ/η into even and odd components for the ratchet
particles. As seen in Fig. 3 (c), the even component takes neg-
ative values and its dependence on the areal fraction is typical
of Ψ1 for achiral particle suspensions [38]. However, the finite
odd component shows a completely different behavior, with
positive values for φ ≤ 0.65 and negative values for φ ≥ 0.7.
The vanishing odd component is near φ = 0.7, where the
even component also experiences the turning point from de-
creasing to increasing. Except φ = 0.7, the odd component is
non-negligible as compared with the even component.

In order to obtain the odd viscosity, we also calculate the
even and odd components of the scaled first normal stress
coefficient Ψ1/(2η0). In Fig. 3 (d), one can see that the ratchet
particles have the similar even componentswith the frictionless

particles for φ ≤ 0.6, but smaller even components for φ ≥
0.65. The odd component for the ratchet particles shows the
similar behavior with the odd component of λ/η as shown in
Fig. 3 (d). Such results demonstrate that both the features of
conventional complex fluids and chiral viscous fluids exist in
the passive ratchet suspensions.
In the following, we study the suspension rheology in the

planar extensional flows. The average contact numbers Z for
different suspensions are shown in Fig. 4 (a). In the figure,
we observe that throughout the areal fraction studied, the Z
values for the ratchets I and II are similar and intermediate as
compared with those for the frictionless and gear-like parti-
cles. Such a phenomenon, not seen for the simple shear flows,
is because the planar extensional flows are symmetric with re-
spect to the contraction and extension axes. Therefore, for both
ratchets I or II, half of the particles undergo the frictionless
contact and the other half experience the infinitely-frictional
contact. This explains the phenomena shown in Fig. 4 (b),
where extensional viscosities for the ratchets I and II also
show the similar behaviors and the intermediate magnitudes
with respect to those for the frictionless and gear-like particles.
Furthermore, since the first normal stress differenceN1 and

coefficient Ψ1 are introduced for simple shear flows, we can-
not use them for planar extensional flows. Thus, we directly
investigate the non-dissipative response function λ instead.
Figure 4c shows the dependence of the ratio λ/η and the cor-
responding reorientation angle on the particle areal fraction
φ. In the figure, the values of θ for the frictionless and gear-
like particles are almost zero, as expected. Nevertheless, the
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ratchets I and II give rise to the monotonic increase and de-
crease, respectively, of the reorentation angle by increasing φ.
By taking the decomposition of the scaled non-dissipative re-
sponse function λ/(2η0) for the ratchet particles, we observe
the vanishing even component but prominent odd component
that increases with φ (see Fig. 4 (d)). This result demonstrates
that the reorientation angle in the planar extensional flows is
only due to the existence of the odd viscosity.

IV. DISCUSSIONS AND CONCLUSION

Although the nonzero odd viscosity is obtained for chiral
passive suspensions, we underline that its dependence on the
particle areal fraction φ varies for different flow types. As
exhibited in the result section, the simple shear and planar
extensional flows give rise to the non-monotonic changes and
monotonic increase of the odd viscosity, respectively. This
difference is due to the flow-induced microstructures, which
affect the non-dissipative response function λ and then make

the odd viscosity flow-type-dependent. Besides, we demon-
strate that the odd viscosity can also be characterized when the
fluid constituents are not externally rotated (by active torques
or imposed flows). Applying planar extensional flows is sug-
gested to be a straightforward examination of the odd viscosity
of a fluid.
In order to give a universal framework for the relevant rhe-

ological characterizations, we schematically present in Fig. 5
the responsive stress and the corresponding reorientation angle
for four different fluid systems. Since the reorientation angle
does not rely on the rotational stress response, our framework
only considers the symmetric part of the stress symσ. Mean-
while, both the cases of simple shear and planar extensional
flows are taken into account.
As seen in the first column, stable Newtonian fluids have

a uniform distribution of constituents and thus constant vis-
cosity. The principal axes of symσ should align exactly with
those of D̂. However, for sheared conventional complex flu-
ids (including viscoelastic fluids and dense suspensions), the
emergence of internal constituent microstructures leads the
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principal axes of symσ to differ from those of D̂. Then one
will obtain a nonzero response function λeven (i.e., the even
component of the first normal stress coefficient) and the cor-
responding reorientation angles satisfying θ1 = −θ2 6= 0.
We note that such behaviors are not typical for planar ex-
tensional flows, because both of the flow field and resultant
microstructures are symmetric with respect to the contraction
and extension axes. For chiral viscous fluids, the principal
axes of the responsive stress rotate for both simple shear and
planar extensional flows. However, the origin is purely due to
the intrinsic chirality, leading to the loss of parity and time-
reversal symmetries of the fluid. As a result, the direction of
the reorientation angle is independent of the shear or exten-
sional rates, i.e., θ1 = θ2 6= 0. The response function is the
odd component of the first normal stress coefficient λodd or the
odd viscosity. Finally, in chiral suspensions (either active or
passive), both microstructures and chirality contribute to the
tilted principal axes of the responsive stress from those of D̂.
Thus, the response function is the first normal stress coefficient
(i.e., λeven + λodd) for the simple shear flows, and is λodd for
the planar extensional flows.

In conclusion, by carrying out computational simulations,
we have studies the rheology of passive chiral suspensions in
constant simple shear and planar extensional flows. The results
of the shear and extensional viscosities show the intermediate

values between those for the frictionless and gear-like parti-
cles. The dependence of the shear viscosity on the particle
chirality is significant at low particle areal fractions but negli-
gible for high areal fractions. Importantly, the chiral passive
suspensions show nonzero even and odd components of the
non-dissipative response function, suggesting the mixed fea-
ture of conventional complex fluids and chiral viscous fluids.
Such even and odd components have the comparable contribu-
tions to the reorientation angle of the system stress. We hope
our work will extend the field of rheology and progress the
understanding of chiral fluids.
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