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An active system consisting of many self-spinning dimers is simulated, and a distinct local rotational jamming

transition is observed as the density increases. In the low density regime, the system stays in an absorbing state,

in which each dimer rotates independently subject to the applied torque; while in the high density regime,

a fraction of the dimers become rotationally jammed into local clusters, and the system exhibits microphase-

separation like two-phase morphologies. For high enough densities, the system becomes completely jammed in

both rotational and translational degrees of freedom. Such a simple system is found to exhibit rich and multiscale

disordered hyperuniformities among the above phases: the absorbing state shows a critical hyperuniformity of the

strongest class and subcritically preserves the vanishing density fluctuation scaling up to some length scale; the

locally jammed state shows a two-phase hyperuniformity conversely beyond some length scale with respect to the

phase cluster sizes; the totally jammed state appears to be a monomer crystal, but intrinsically loses large-scale

hyperuniformity. These results are inspiring for designing novel phase-separation and disordered hyperuniform

systems through dynamical organization.
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Disordered hyperuniform systems are exotic states of

matter, which are isotropic as liquids or glasses but sup-

press long-wavelength density fluctuations as crystals. [1–5]

Amorphous materials with density hyperuniformity are

naturally endowed with superior physical properties [6–11]

and are thus of great importance in both science and tech-

nology. Synthesis of hyperuniform amorphous materials is

a double challenge, as crystallization needs to be avoided

while hyperuniformity should not be hampered. Single-

component synthesis, which provides the great advantage

of easy manipulation, hardly produces both disorder and

hyperuniformity, especially in low dimensions.

Active matter may be promising for tackling such a

difficulty. First, active systems may form structures due

to dynamical organization which may avoid crystallization

even for a monodisperse constituent. Monodisperse self-

spinning rods have been observed to form some disordered

structures though not discussed in detail. [12,13] Second,

active matter utilizes energy locally, and thus may pre-

vent the formation of meta-stable local structures which

would destroy density hyperuniformity. Many active sys-

tems thus exhibit density hyperuniformity without rely-

ing on long-range interactions as required in equilibrium

systems. [1,14] Circle swimmer [15,16] and active spinner [17]

systems have been shown to be density hyperuniform in

their active fluidic regimes.

Here by employing the previously studied model, [13,17]

we show that fast-spinning active dimers, not only un-

dergo the previously reported jamming transition from an

absorbing state (ABS) to an intermediate squeezed fluid

and finally to a totally jammed state (TJS), [12,13] but also

exhibit a distinct microphase-separation like feature that

jamming happens locally and homogeneously. The inter-

mediate fluidic state thus becomes a locally jammed state

(LJS) exhibiting a two-phase morphology.

We identify that such an active spinner system in a

critical ABS could also be both disordered and strongly

hyperuniform, and the local jamming transition even leads

to a two-phase hyperuniformity. The ABS is found to sub-

critically preserve the hyperuniformity density-fluctuation

suppression up to some length scale, which diverges at the

critical point. The intermediate LJS shows a hyperunifor-

mity scaling beyond some length scale with respect to the

phase cluster sizes. The final TJS appears to be a crystal

for the constituent monomers of the dimers but an amor-

phous media for the dimer centroids, which suppresses den-

sity fluctuations as that in a strongly hyperuniform case

at small length scales but shows a non-hyperuniform char-

acteristic at large scales. To our knowledge, such a rich

exhibition of multiscale hyperuniformities in a single sys-

tem is rare.

We simulate a two-dimensional (2D) active spinner sys-

tem as those described in Refs. [13,17]. Each spinner is a

dimer consisting of two spherical monomers bonded with
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fixed length 𝜎 = 1 [Fig. 1(a)]. Each monomer has a mass

𝑚 = 1 and each dimer has a moment of inertia 𝐼 = 1
2
𝑚𝜎2.

The monomers from different dimers interact with each

other through a Weeks–Chandler–Andersen potential with

a cutoff distance 𝑟c ≡ 21/6𝜎. With the total effect of all

such pair interactions denoted by 𝑈(𝑡), the dynamics of

any dimer 𝑖 is governed by

2𝑚𝑟𝑖 = −2𝛾t�̇�𝑖 −∇𝑖𝑈(𝑡),

𝐼𝜃𝑖 = 𝒯 − 𝛾s𝜃𝑖 − 𝜕𝜃𝑖𝑈(𝑡),

where 𝒯 is the driving torque, 𝛾t and 𝛾s are the transla-

tional and the rotational viscosities, respectively. All the

simulation details are described in the Supplementary In-

formation. Particularly, we choose a small 𝛾s to induce

fast-spinning but a large 𝛾t to reduce diffusion. We thus

have a large relaxation time ratio 𝜏s/𝜏t = 1000, which is

crucial for the jamming transition to occur locally. Typ-

ically, a system with 𝑁 dimers in a square box of length

𝐿 is simulated, and its number density is simply evaluated

as 𝜑 = 𝑁𝜎𝑑/𝐿𝑑 (with the dimension 𝑑 = 2).

With the above settings, all the mentioned states

(ABS, LJS, and TJS) can be observed in the simulated

system. First, the ABS, in which each dimer rotates inde-

pendently subject to the applied torque, is observed for rel-

atively low densities [Fig. 1(d)]. As the density increases,

the system undergoes a local jamming transition and tran-

sits into an LJS. The main jamming feature observed at

first is in the rotational degree of freedom that the involved

dimers cease to spin freely and are compacted into local

clusters. As the remaining dimers still keep spinning and

are organized into relatively loose structures, a two-phase

morphology develops [Fig. 1(f)]. For a very dense system,

no dimer can diffuse and rotate any more, and the system

gets totally jammed in all degrees of freedom (a TJS). The

TJS appears to be an imperfect crystal for the monomers,

but actually creates an amorphous configuration for the

dimer centroids [Fig. 1(g)].
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Fig. 1. (a) Simulated dimers with core size 𝜎 and interaction distance cutoff 𝑟c. (b) Four types of particle

dynamics: monomers circled by blue dashes show different trajectories (cyan), long trajectories indicate diffusion

while point/circle trajectories indicate jamming/absorbing, dimers in shaded red rotate freely and those in shaded

blue barely rotate. (c) Average angular velocity ⟨𝛺⟩ and its standard deviation 𝜎𝛺 , as functions of 𝜑. (d)–(g)

Steady state snapshots for systems at 𝜑 = 0.2, 0.3, 0.4, 0.5. (h)–(k) Dimer centroids extracted from (d)–(g), with

the spin velocity 𝛺 indicated by colors.

Generally, four typical types of particle dynamics can

be observed during the whole procedure, as indicated by

blue circles in Fig. 1(b): (1) absorbing but freely spinning,

(2) completely jammed, (3) rotationally jammed but dif-

fusing, (4) spinning and diffusing. The former two are

respectively the only type of particle dynamics in the ABS

and that in the TJS, while all the dynamics can be ob-

served in the intermediate LJS. The local jamming actu-

ally leads to a two-phase fluid, and the diffusive dynamics

can be observed either near the phase boundaries or in

clusters moving as a whole.

The local rotational jamming transition corresponds

to a crossover in the averaged angular velocity of all the

spinners �̄� = ⟨𝛺⟩/𝛺0 (where 𝛺 ≡ 𝜃, and the measure is

normalized by the freely spinning velocity 𝛺0 = 𝒯 /𝛾s), as

shown in Fig. 1(c). In this specific system, the crossover
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ranges from a lower transition point at 𝜑 ≈ 0.31 to a

higher one at 𝜑 ≈ 0.48. Critically at the lower transition

point 𝜑 = 0.31, cross structures (or T-structures called in

Ref. [12]) of freely spinning dimers are observed [Fig. 1(e)].

Due to spin phase differences, the dimers may not inter-

fere with each other, even when their centroids get closer

than the dynamical sweeping range (𝜎 + 𝑟c)/2. Any ini-

tial state of the system, with arbitrary overlaps between

the dimers’ sweeping ranges, would dynamically reorganize

and spontaneously generate randomness in the spin phase

differences. Such a mechanism automatically avoids crys-

tallization and produces amorphous structures. Around

the higher transition point 𝜑 = 0.48, a complete jamming

trivially leads to a crystal-like structure at the monomer

scale, with unavoidable dislocations generated by the self-

imposed stresses and the odd elasticity [18] of the jammed

spinners.

The local rotational jamming may start from a single

dimer, which ceases spinning due to a little bit of over-

crowding. As a result of the large relaxation time ratio

𝜏s/𝜏t = 1000, the dimers tend to separate into distinct

spinning and non-spinning regions rather than globally

slow down, as the density increases. Since the squeezing

occurs homogeneously, the system resembles a microphase-

separation process and presents a two-phase morphology,

with high-density clusters of 𝛺 ≈ 0 in the rotationally

jammed regions and freely spinning cross structures of

𝛺 ≈ 𝛺0 for the rest. The above features ensure that

the crossover corresponding to the transition never gets

as sharp as that in Ref. [12].

As angular velocities of the dimers are spontaneously

discretized into two values, statistics of 𝛺 automatically

measure the number faction of spinners in either phase for

the two-phase morphology. The standard deviation of the

angular velocity 𝜎𝛺 reaches its maximum value 𝛺0/2 at

about 𝜑 = 0.37 [Fig. 1(c)], indicating an equal partition

between the two phases, with half free spinners and half

rotationally jammed ones. In contrast with the crossover

in �̄�, one observes an abrupt change in 𝜎𝛺 at both the

lower and higher transition points. The rapid deviation

from 0 when 𝜑 increases from 0.31 or decreases from 0.48

shows that 𝜎𝛺 is a better indicator for the local jamming

transition.

The system produces disordered patterns for vari-

ous densities, below or beyond the lower critical point

𝜑 ≈ 0.31. Even for the TJS beyond the higher criti-

cal point 𝜑 ≈ 0.48, randomness in the orientation of the

dimers causes strong disorder in their centroid configura-

tions. Steady-state configurations of the dimer centroids

for different states are respectively shown in Figs. 1(h)–

1(k), which are obviously disordered as point configura-

tions.

The rich disordered patterns exhibited by the system

have different extents of uniformity, as can be seen from

Fig. 1. Treated as point configurations, one can measure

the density fluctuations ⟨𝛿2𝜌(𝑅)⟩ ≡ ⟨𝜌2(𝑅)⟩ − ⟨𝜌(𝑅)⟩2

for a randomly chosen spherical window with radius 𝑅

(𝑅 < 𝐿/2 to avoid finite size effect). The analysis can be

performed on either the monomers or the dimer centroids,

for either all spinners or only the free ones. Here in Fig. 2,

we only present the analysis on dimer centroids for all the

spinners in the system.

The ABS at a density below the lower critical point

(e.g., 𝜑 = 0.25 in Fig. 2), shows a density fluctuation

suppression, with a vanishing scaling relation ⟨𝛿2𝜌(𝑅)⟩ ∼
𝑅−2.9 extending up to some length scale (about 10𝜎 for

𝜑 = 0.25). Such a behavior commonly exists for ABS’s of

many different systems. [19,20] The length scale diverges as

the density approaches the critical value 𝜑 ≈ 0.31, and the

vanishing scaling relation extends to the system size scale

(see 𝜑 = 0.3125 in Fig. 2). This result evidences that the

critical ABS has hyperuniformity properties of almost the

strongest class.

The TJS at density beyond the higher critical point

(e.g., 𝜑 = 0.50 in Fig. 2) has small density fluctuations,

which is comparable with the critical hyperuniform case

even for large 𝑅. However, the large-𝑅 asymptotic behav-

ior ⟨𝛿2𝜌(𝑅)⟩ ∼ 𝑅−2 indicates that the jammed configura-

tion is intrinsically non-hyperuniform.
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Fig. 2. Density fluctuations ⟨𝛿2𝜌⟩ as functions of win-

dow size 𝑅 for various 𝜑, measured at fixed system size

𝐿 = 400𝜎. Various lines show different asymptotic 𝑅−𝛼

scalings.

The LJS corresponding to the crossover has diffusive

dynamics, and we naively perform the same analysis for

some instantaneous steady-state snapshots. The results

for 𝜑 = 0.375 and 0.4375 are shown in Fig. 2. For small 𝑅,

the density fluctuation behavior mimics those of the ABS

and the TJS, since statistics are mainly carried out in-

side one phase and phase boundaries are rarely involved.

Beyond some length scale (typically 10𝜎), a scaling re-

lation ⟨𝛿2𝜌(𝑅)⟩ ∼ 𝑅−𝛼 with 𝜑-dependent 𝛼 is observed.

Obviously, 𝛼 varies due to changes of the cluster sizes of

either phase. For a finite simulation set, the exponent 𝛼

measured could be as small as 2.4 (still well beyond the

hyperuniformity criterion 2), or as large as 2.9 (close to

the strongest hyperuniformity).

To further characterize the disordered hyperuniformity

of the system, we calculate the structure factor 𝑆(𝑞) for

such point configurations of dimer centroids, which are

shown in Fig. 3(a). Typically for a hyperuniform system,

𝑆(𝑞) → 0 as 𝑞 → 0, with asymptotic scaling 𝑆(𝑞) ∼
𝑞𝛽 (𝛽 > 0). The 𝑆(𝑞) for the subcritical ABS at 𝜑 = 0.25
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or for the TJS at 𝜑 = 0.5 increases as 𝑞 → 0. These be-

haviors are consistent with the results of the density fluc-

tuation analysis that the two states are not hyperuniform

at large scales. For the critical ABS at 𝜑 = 0.3125 and the

LJS at 𝜑 = 0.4, decays in 𝑆(𝑞) are found as 𝑞 → 0, with

scaling relations 𝑆(𝑞) ∼ 𝑞0.6 and ∼ 𝑞1.0, respectively.

A hyperuniformity index 𝐻 = 𝑆(𝑞 → 0)/𝑆peak (where

𝑆peak is the peak value) can be defined with the calculated

structure factors 𝑆(𝑞). [1] Empirically, one has 𝐻 . 10−3

for hyperuniform configurations. [21,22] We plot the corre-

sponding 𝐻 as a function of 𝜑 in red for system of size

𝐿 = 400𝜎 in Fig. 3(b), and more data are shown in blue

for a smaller system with 𝐿 = 200𝜎. In both cases, we ob-

serve a drastic decrease in 𝐻 to below 10−3 for the critical

ABS, indicating a strong hyperuniformity. However, 𝐻

does not reflect the hyperuniform feature of the LJS, and

is a bit misleading for becoming low in the TJS, which is

intrinsically not hyperuniform.
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Fig. 3. Structure factor 𝑆(𝑞) and hyperuniformity index

𝐻(𝜑): (a) 𝑆(𝑞) at 𝜑 = 0.25, 0.3125, 0.4, 0.5 for system size

𝐿 = 400𝜎, the dashed lines show the asymptotic small-𝑞

scalings. (b) The corresponding 𝐻(𝜑) to the system in (a)

is shown in red, and much more data for a smaller system

(𝐿 = 200𝜎) is shown in blue for comparison.

To correctly characterize the LJS, we need to treat it

as a two-phase media, by thresholding some scalar field.

The angular velocity 𝛺 is a pseudo-scalar for a 2D system,

one thus can construct a scalar field 𝛺(𝑟) (see the Supple-

mentary Information for details). With the jammed phase

(𝛺 = 0) and the active phase (𝛺 = 𝛺0) respectively col-

ored in blue and red, a typical two-phase field for 𝜑 = 0.375

is shown in Fig. 4(a).
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Fig. 4. Two-phase hyperuniformity: (a) the two-phase

field 𝛺(𝑟) for 𝜑 = 0.375; (b) the spectral density 𝜒𝑉 (𝑞) for

𝜑 = 0.36875, 0.375, 0.4, 0.4375, the dashed line at small 𝑞

shows a 𝑞1.2 law approaching to zero, and the dash-dotted

line shows a 𝑞−3 scaling for large 𝑞.

For a hyperuniform two-phase media, its spectral

density 𝜒𝑉 (𝑞) approaches to zero as 𝑞 → 0, with

𝜒𝑉 (𝑞) ∼ 𝑞𝛾 (𝛾 > 0). [1,3] For an image representation

with square pixels, the spectral density can be measured

as 𝜒𝑉 (𝑞) = 𝑚2(𝑞)𝜑𝑖𝑆𝑖(𝑞), [10,23] where the shape factor

𝑚(𝑞) = sinc(𝑞𝑥/2)sinc(𝑞𝑦/2), 𝜑
𝑖 is the volume fraction for

either phase denoted by the superscript 𝑖, and 𝑆𝑖(𝑞) is the

structure factor for the corresponding pixel centers. We

perform the analysis with the active phase data for various

LJS’s, and the results are shown in Fig. 4(b). Obviously,

such two-phase states have a strong-hyperuniformity char-

acteristics with 𝛾 > 1 (𝛾 ≈ 1.2). It is worth noting that

all the normalized spectral density curves collapse except

for some very large density (e.g., 𝜑 = 0.4375). This indi-

cates that the relative phase cluster sizes, which generally

change with 𝜑, are not critical for hyperuniformity. The

system can stably develop hyperuniform morphologies for

the two phases with either equal or unequal concentrations.

The arbitrary shapes of the clusters also indicate that they

possess no effective surface tension. For 𝜑 = 0.4375, the

small-𝑞 scaling seems to have a much smaller 𝛾, possibly

due to some statistical reason. As we choose the active

phase as the explicit one in all calculations, the number of

the spinners involved in this case is quite small since most

of them are jammed. Additionally, the system always has

a 𝑞−3 decay at the large 𝑞 side, which is similar to that of

the numerically designed patterns through Fourier-space

construction. [10]
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Fig. 5. The TJS at 𝜑 = 0.5: (a) density fluctuations

⟨𝛿2𝜌(𝑅)⟩ for the dimer centroids (blue) and the monomers

(orange), in which The dashed and dash-dotted lines re-

spectively show the 𝑅−2 and 𝑅−3 scalings; (b) the radial

distribution functions 𝑔(𝑟) for the dimer centroids (blue)

and the monomers (orange), where the inset shows the

structural factor 𝑆(𝑘) for the dimer-centroid configura-

tion.

As it is known that density hyperuniformity is re-

lated to incompressibility, the fact that the TJS, which

is nearly incompressible, is not hyperuniform, is strange,

especially when the monomer configuration appears to be

crystal-like. We perform the density-fluctuation analysis

for the monomer configurations, which shows more-or-less

the same behavior as that of the dimer centroids, with

∼𝑅−3 at small 𝑅 and ∼𝑅−2 at large 𝑅 [see Fig. 5(a)].

We argue that such a behavior is due to some intrinsic

constraints within the current system. The monomers

form imperfect hexagons as we have 𝑟c ̸= 𝜎, with the

radial distribution function 𝑔(𝑟) peaking at both 𝑟 = 𝜎

and 𝑟 = 𝜎+𝑟c
2

[as shown in Fig. 5(b)]. Random orienta-

tions of the dimers leads to a random tiling of the imper-

fect hexagons, and we have an intrinsic fluctuation pro-

portional to 𝑟c−𝜎
2

in determining pair distances. Such a

fluctuation is small but independent of the size 𝑅 of any
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window chosen for statistics. Thus, the fluctuation can not

be averaged out and always causes a number-counting fluc-

tuation proportional to the peripheral length of the win-

dow, i.e., ∼𝑅𝑑−1. The fluctuation is negligible for small

𝑅, but becomes dominant when the statistical fluctuation

vanishes at large 𝑅.

More interestingly, the disordered dimer-centroid con-

figuration, as the imperfect monomer crystal, also shows

sharp peaks in 𝑔(𝑟) [Fig. 5(b)], and the corresponding

structural factor 𝑆(𝑘) [inset of Fig. 5(b)] still inherits a

six-fold symmetry even though it has been somehow an-

gularly blurred. The 𝑆(𝑘), without an angular average,

approaches zero at many but not all 𝑘 points in some range

like |𝑘| < 𝐾, which may be viewed as a variant originat-

ing from stealthy hyperuniformities. [24–27] These strange

features of the TJS indicates that there is still plenty of

room in-between ordered and disordered, hyperuniform or

nonhyperuniform configurations, and thus are inspiring for

designing new materials.

Conclusively, multi-scale disordered hyperuniformities

are revealed in a simple active spinner system. The small

requirements of the system on particle constitutions and

pair interactions are encouraging for fabricating various

hyperuniform amorphous structures through dynamical

organization.

The critical hyperuniformity in the ABS’s of such spin-

ner systems is uncovered for the first time, and is found to

belong to almost the strongest class. A novel phenomenon

also discovered is the subsequent two-phase hyperunifor-

mity during the local jamming transition, which could also

be of a strong class. Additionally, the final TJS, which is

intrinsically nonhyperuniform but with confined density

fluctuations to a rather low level, may provide ideas for

designing interesting nonhyperuniform or even antihyper-

uniform materials. [28,29]

Though only zero-temperature results are present here,

we have carried out some finite temperature simulations.

For low temperatures, all the results remain qualitatively

the same, as discussed in Ref. [15]. When the temperature

becomes high enough, the system goes into the active flu-

idic regime and a hyperuniform fluid as that in Ref. [17] is

recovered.

Active spinner systems are known to break time-

reversal symmetry and show topological behaviors. [30–33]

We have observed multiple vortices induced by caged diffu-

sion of the free spinners in the two-phase regime, which ob-

viously correspond to spontaneous topological edge flows

along spontaneously generated phase boundaries. Further-

more, dislocations are found to inevitably exist due to

“odd” stresses of the active spinners in the TJS’s.

Acknowledgments. This work was supported by the

National Natural Science Foundation of China (Grant

Nos. 11774393, 11404378, 12274448, 22272040, and

T2325027), Youth Innovation Promotion Association of

CAS (Grant No. 2017014), and the National Key R&D

Program of China (Grant Nos. 2022YFF0503504 and

2022YFA1203200).

References

[1] Torquato S 2018 Phys. Rep. 745 1
[2] Torquato S and Stillinger F H 2003 Phys. Rev. E 68

041113
[3] Torquato S 2016 Phys. Rev. E 94 022122
[4] Torquato S 2016 J. Phys. 28 414012
[5] Torquato S 2021 Phys. Rev. E 103 052126
[6] Florescu M, Torquato S, and Steinhardt P J 2009 Proc.

Natl. Acad. Sci. USA 106 20658
[7] Leseur O, Pierrat R, and Carminati R 2016 Optica 3 763
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