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We construct structural order parameters based on local angular and radial distribution functions in dense
colloidal suspensions. All the order parameters show significant correlations to local dynamics in the
supercooled and glass regime. In particular, the correlations between the orientational order and dynamical
heterogeneity are consistently higher than those between the conventional two-body structural entropy and
local dynamics. The structure-dynamics correlations can be explained by a excitation model with the
energy barrier depending on local structural order. Our results suggest that in dense disordered packings,
local orientational order is higher than translational order, and plays a more important role in determining
the dynamics in glassy systems.
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Glassy systems such as supercooled liquids and amor-
phous solids are often referred to as “disordered” matters,
due to the lack of apparent long-range order in their
structures. From the ensemble averaged radial distribution
functions (RDFs), the structures of flowing liquids and
solid glasses are essentially identical, despite qualitative
changes in the thermodynamical properties and orders of
magnitudes differences in relaxation dynamics [1,2]. This
absence of clear structure-property connections in amor-
phous materials challenges the long-standing paradigm in
condensed matter physics. To re-establish this connection,
it has been proposed that certain nonperiodic structural
order, or amorphous order exists in glasses and supercooled
liquids. The development of amorphously ordered struc-
tures during glass transitions can qualitatively explain some
of the fundamental phenomena in glass physics, including
the rapid slowing down of dynamics and dynamical
heterogeneity [3–13]. However, the details of the amor-
phous structural order remain unclear. As they are spatially
nonperiodic, they are hard to detect by most scattering-
based experimental techniques. Even when the atomic
positions can be readily extracted using transmission
electron microscope or atomic electron tomography
[14,15], no libraries of structures are available to distin-
guish ordered structures from disordered background.
Many proposals have been put forward to identify

amorphously ordered structures in glassy systems, and to
establish credible links to dynamics or mechanical proper-
ties of glasses [16]. Symmetry-based models [17–21]
determine the local structural order by comparing configu-
rations to high-symmetry templates including crystalline

structures. Point-to-set [22–26] analyses are employed to
detect the length scale of ordered structures without
knowing the details of atomic arrangements in the ordered
domains. Recently, machine-learnt softness [27–31] and
local structural entropy S2 [17,32–34] show strong predict-
ing power for local deformations in binary liquids or
glasses. Both the softness and S2 rely heavily on the local
RDFs [27,32] that are averaged over all directions under the
assumption of angular isotropy. The actual angular dis-
tributions of neighbors around a particle in glasses, how-
ever, are rarely uniform, and can vary considerably from
one location to another. Such angular anisotropy are
particularly significant within the first few neighbor shells
where the RDF also exhibits large fluctuations. Tong et al.
[35–37] discover that an order parameter based on bond
angles in the first-neighbor shell, when coarse-grained, can
efficiently predict the mobility patterns in glasses over time.
Such nonuniformity in angular distributions of neighboring
particles contains valuable information regarding the amor-
phous orders in glasses [38], as structural orders are simply
reflections of spatial anisotropies, as in the cases of crystals
and the short-range orders in glasses [39].
In this Letter, we extend the conventional two-body

structural entropy S2 to include angular fluctuations,
defining a total structural entropy Sa that contains both
radial and angular information, and a orientational entropy
So that depends only on angular fluctuations. All three
structural order parameters, S2, Sa, and So, are evaluated
locally for each particle in quasi-two-dimensional (quasi-
2D) colloidal packings, and are correlated to local dynam-
ics. Of the three order parameters, Sa exhibits the highest
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structure-dynamics correlations, and So shows consistently
higher correlations to dynamics than S2 under comparable
statistics. All correlation coefficients increase with the
packing fraction, which can be understood using a simple
excitation model. Our results highlight the important role of
the orientational configurations in the structural orders in
liquids and glasses, which has been largely overlooked in
previous studies.
We perform video-microscopy measurements on colloi-

dal samples. The samples consist of a binary mixture of
PNIPAM particles confined between two cover slips,
forming a monolayer of quasi-2D colloidal suspensions
[40–42]. The diameter ratio of the particles is chosen to be
∼1.4with a number ratio of ∼1 to frustrate crystallization at
2D [43–45]. The PNIPAM particles are thermosensitive
whose diameters decrease with increasing temperature.
During the experiments, the sample packing fraction is
tuned in situ by an objective heater, from flowing liquids to
jammed glasses. The samples are imaged using standard
brightfield microscopy at 60 fps. Before data acquisition,
the samples are equilibrated on the microscope stage for
3 h. There are ∼3500 particles in the field of view, and the
particle trajectories are extracted using particle tracking
techniques [46]. The vertical fluctuations of the particles
are estimated to be 0.15 μm or 12% of the average
particle’s diameter [41]. Collective drifting of the particles
is digitally removed before further analysis.
In the experiments, the position of a neighboring particle

relative to a reference particle can be described by the

separation r and an orientation angle θ relative to a preset
axis (x axis in this Letter), as shown in the diagram in
Fig. 1(a). Thus, a two-parameter local distribution function
giðr; θÞ can be defined as giðr; θÞ ¼ ½nðr; θÞ=neðr; θÞ�,
where nðr; θÞ is the local number density at ðr; θÞ, and
neðr; θÞ ¼ ρ is the mean number density of the system.
Figure 1(d) plots the local distribution function of a typical
particle in the experiment, with different colors corresponding
to the values of giðr; θÞ. It is easy to show that when averaged
over θ, one recovers the commonly used radial distribution
function giðrÞ ¼ ð1=2πÞ R 2π

0 giðr; θÞdθ. An angular distribu-
tion function is defined as the radial average of the local
distribution function, with giðθÞ ¼ ð2=R2Þ R R

0 giðr; θÞrdr. In
principle, the integral limitR extends to infinity, but in practice
the distributions of particles further than 5 diameters are close
to the system average. And in our experiments, we limit our
analyses to particles more than 5 diameters away from the
boundary of the images. Figures 1(b) and 1(c) show the
diagram for evaluating giðrÞ and giðθÞ, respectively. And
Figs. 1(e) and 1(f) plot the color-coded giðrÞ and giðθÞ with
the same total number of bins as giðr; θÞ in Fig. 1(d). It is clear
that all three local distribution functions are not spatially
uniform with considerable fluctuations. In practice, the
distribution functions depend on the finite spatial resolution
of particle positions and limited statistics in experiments.
When the bins are too narrow, the distribution functions suffer
from poor statistics, and record largely noises, while toowide
bins average out small-scale structural features. We esti-
mate the higher and lower bound of bin numbers based on
experimental conditions, and choose a range where the

FIG. 1. Local distribution functions in disordered packings. (a) Diagram for the two-parameter local distribution function giðr; θÞ, with
the reference particles i at the center, and the positions of neighboring particles described by polar coordinates ðr; θÞ. (b),(c) Diagrams for
radial local distribution functions giðrÞ and giðθÞ, when the neighboring regions of the reference particles are partitioned into rings or
sectors. (d)–(f) Representative distribution functions giðr; θÞ, giðrÞ, and giðθÞ for a particle; colors indicate relative probability to themean.
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distribution functions are insensitive to the varying of bin
numbers [47].
For each of the three local distribution functions, giðr; θÞ,

giðrÞ, and giðθÞ, a local structural entropy can be defined
for each particle i. Specifically, for giðr; θÞ, we have

Sa;i ¼ −
kB
2

X
u¼b;s

ρi;u

Z
R

0

Z
2π

0

½gi;uðr; θÞ ln gi;uðr; θÞ

− gi;uðr; θÞ þ 1�rdrdθ; ð1Þ

where ρi;u is the number density of big or small particles
surrounding particle i, gi;uðr; θÞ is the local distribution
function between particle i and particles of type u.
Similarly, entropy from the radial distribution is the
commonly used two-body structural entropy [54]

S2;i ¼ −kBπ
X
u¼b;s

ρi;u

Z
R

0

½gi;uðrÞ ln gi;uðrÞ

− gi;uðrÞ þ 1�rdr ð2Þ

and the orientational entropy is defined as

So;i ¼ −
kB
4
R2

X
u¼b;s

ρi;u

Z
2π

0

½gi;uðθÞ ln gi;uðθÞ

− gi;uðθÞ þ 1�dθ: ð3Þ

All three entropies are quantified relative to completely
disordered ideal gases of the same density, so that a
negative value of entropy indicates local structural order.

To investigate the correlations between structural entro-
pies and local dynamics, we measure particle dynamics
using the local Debye-Waller factor σ2 ¼ h½riðtÞ − r̄i�2i
over a preselected time window τ. Here, riðtÞ is the position
of particle i at time t, r̄i is the average position of particle,
h:i denotes the time average [55,56]. The time window τ is
selected to be the α-relaxation time of the system, when the
highest correlations between structural entropies and
dynamics are observed [47]. To ensure that entropies
obtained from samples of different packing fractions are
statistically comparable, the number of frames used calcu-
lating the distribution functions are fixed to be 36, the
number of frames for τα in the most dilute sample. For
samples of higher packing fractions, 36 equally spaced
images are extracted from a video segment. A total of 150
segments are used for each packing fraction. For low
packing fractions (ϕ < 0.77), the segments are nonoverlap-
ping; while for high packing fractions (ϕ ≥ 0.77), the
segments are allowed to overlap [47].
Figure 2(a) plots a snapshot of the spatial distribution of

σ2 at ϕ ¼ 0.83. The particles are colored according to their
percentile in σ2, with warmer colors corresponding to
particles with faster dynamics. For comparison, the spatial
distributions of the structural entropies are shown in
Figs. 2(b)–2(d). Both Sa and So exhibit clear spatial
correlations to particle dynamics, with fast regions over-
lapping with regions with high structural entropy, or less
local order. The correlation between S2 and local dynamics,
on the other hand, is considerably less obvious.
We quantify the correlations between local structural

orders and dynamics by calculating the rank correlation

(a) (b)

(c) (d)

FIG. 2. Spatial distributions of dynamics and structural entropies. (a) Spatial distribution of σ2 at ϕ ¼ 0.83. (b)–(d) Spatial
distributions of Sa;i, So;i, and S2;i, respectively. The particles are color-coded according to their percentile in the corresponding
distributions.
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coefficient [35] between structural entropies and σ2. The
experimental data are divided into separate segments of τ
duration. For each segment, σ2 and structural entropies are
evaluated for each particle, and a rank correlation coef-
ficients is calculated. The correlation coefficients from each
segment are then averaged over all the segments. The total
number of bins of the distributions used to calculate the
structural entropies is fixed to be 600, so that the structural
entropies and the corresponding correlations coefficients
can be compared quantitatively [47]. Figure 3(a) plots the
Spearman’s rank correlation coefficients between local
dynamics and Sa, S2, and So, respectively, for the range
of packing fractions across the glass transition. The error
bars are the standard deviations of the correlation coef-
ficients from different segments at a certain packing
fraction. Of the three local structural order parameters,
Sa shows the highest correlation to local dynamics, and S2
the lowest, while the orientational entropy So falls in
between. And for all three structural entropies, the average
correlation to local dynamics increases with the packing
fraction. At the highest packing fraction, σ2 − Sa;i, corre-
lation reaches a value greater than 0.8. Even at the lowest
packing fraction of 0.55, where the particles are diffusing
freely, σ2 − Sa;i still maintains a correlation coefficient of
0.55, greater than the highest correlation between σ2 and S2
at ϕ ¼ 0.83. Similarly high correlations between dynamics
and orientational entropies have also been observed in
simulations of 2D and 3D disordered packings, where
orientational entropies Sa and So consistently outperform
the direct two-body entropy S2 [47].
The correlation coefficients between the structural entro-

pies and local dynamics indicate the amount of information
contained in the structural order parameters that is relevant
to dynamics. Among the three structural parameters con-
sidered, Sa contains the most complete information on local
structures, and naturally exhibits the highest correlation to
dynamics at all packing fractions. The orientational entropy
So and two-body entropy S2 both miss about “half” of the
structural information by averaging out the radial or

angular component of the local distribution function.
Naively, one might expect them to have similar decreases
of correlations to dynamics compared to Sa. However, as
shown in Fig. 3(a), the orientational entropy So consistently
outperforms S2 in correlating to local dynamics by more
than 47.6%. This observation suggests that the structural
orders in liquids or glasses consist mainly of orientational
order, and local structures are more ordered orientationally
than radially. Figure 3(b) plots the distribution of the
difference between S2 and So for different packing frac-
tions. The S2 values are systematically higher than So,
indicating that local particles are indeed more uniformly
distributed (thus less ordered) radially than orientationally.
In addition, Sa and So also outperform a number of popular
metrics applicable to experiments in correlating to local
dynamics [47].
In the supercooled liquids, the activated local dy-

namics depends on the effective temperature Teff that is
inversely proportional to the packing fraction, and the local
energy barrier Eb. The positive correlations between
structural entropies and local dynamics suggest that more
ordered structures correspond to slower dynamics, there-
fore higher activation barriers. According to Arrhenius-
Kramers equation [57,58], local diffusion coefficients
are directly related to the activation energy barrier by
ðD0=DÞ¼ 4

3
ð2πkBT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00

0jU00
bj

p
λ2ÞexpðEb=kBTÞ, where D0

is the free diffusion coefficient, λ is the lattice constant,
U00

0 ≡ ½d2UðxÞ=dx2�jx¼x0 and U00
b ≡ ½d2UðxÞ=dx2�jx¼xb are

the second derivatives of dynamic free energyUðxÞ [47]. In
our experiments, the local diffusion coefficients D of a
particle is estimated by σ2i =τα and λ is replaced by the mean
separation of particles. Thus the local activation barrier can
be obtained using ðEb=kBTÞ¼ ln½3

4
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U00
0jU00

bj
p

λ2=2πkBTÞ×
ðD0=DÞ�. Figure 3(c) plots the energy barriers as a function
of local structural entropies. The activation barrier
decreases linearly with the structural entropy and the
relative energy barrier between two distinct local structural
entropies is almost independent of packing fractions [47].

FIG. 3. Structural entropies and local dynamics. (a) Rank correlation coefficients between structural entropies and σ2. (b) Distributions
of the differences between S2 and So for three different packing fractions. (c) Estimated activation energy barrier Eb as a function of Sa
for large particles in different packing fractions; the dashed lines are linear fits to the experimental data.
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In the experiments, the measured σ2 consists of activated
fluctuations and thermal noises independent of local
barriers. At low packing fractions (high Teff ), the energy
barriers are small compare to Teff , and structure-dynamics
correlation is degraded by the significant random noises. At
higher packing fractions (low Teff ), the thermal noise is
reduced, and local dynamics are largely determined by
local structural orders, which results in higher σ2 − S
correlations.
In summary, our current work quantifies structural orders

in supercooled liquids and glasses using local distribution
functions that include complete or partial structural infor-
mation. Based on the general principle that structural orders
are a reflection of spatial inhomogeneity of particle dis-
tributions, this method overcomes the lack of characteristic
structural features in glassy materials, which has long
frustrated the search for amorphous orders. The high
correlations between the structural entropies and local
dynamics shows that these structural parameters are indeed
proper measures of order in local structures that can be
quantitatively associated to the activation barriers in
glasses. In particular, we show that orientational order is
the main component of amorphous orders in both liquids
and glasses when long-range structural correlation is
absent. Structural entropies employed in the current work
are an intuitive and simple way to identify orders in glass
materials. Other constructions may also efficiently capture
the spatial inhomogeneities in disordered packings, which
should be the topic of future studies.
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