
Nature Physics

nature physics

https://doi.org/10.1038/s41567-023-02016-4Article

Visualizing slow internal relaxations in a 
two-dimensional glassy system

Yanshuang Chen1,2, Zefang Ye1, Kexin Wang    1, Jiping Huang    1, Hua Tong    3, 
Yuliang Jin    4, Ke Chen5, Hajime Tanaka    6,7  & Peng Tan    1,2 

Unlike a crystal, a glassy solid state displays slow internal relaxation 
processes besides vibrational modes even when structural (α) relaxation 
is frozen. The precise nature of such residual local relaxation modes 
remains poorly understood due to the lack of real-space information. 
Here we directly visualize the internal relaxations in a glass via a long-time 
observation of the dynamics of a mechanically driven two-dimensional 
granular system that shows a pinning-induced transition. This allows 
directly visualizing the internal relaxations in a glass. On approaching the 
glass transition, vanishing cage-breaking motion is observed, accompanied 
by the emergence of a restricted dynamic mode characterizing slow β 
relaxation. The emergence of bond rigidity freezes the structure relaxation 
and leads to slow β motion. Our findings indicate that unlike crystallization, 
where all the bonds are constrained, vitrification in a disordered system 
freezes α relaxation and accompanies elastic percolation, but the remaining 
non-constrained bonds provide room for slow β relaxation.

When a liquid crystallizes, all the relaxational modes except for the 
vibrational phonon modes are frozen. In contrast, not all the relaxa-
tional modes of motion are frozen in a glass state despite being solid. 
In practice, besides the ultraslow α relaxation responsible for the 
solidity, the glassy state also exhibits subtle slow internal relaxa-
tions, known as the slow β (or Johari–Goldstein) mode. This mode is 
a manifestation of the structural complexity intrinsic to disordered 
systems and the non-equilibrium nature of a glassy state1–6. Unlike the 
fast β relaxation process, identified as the rattling motion inside the 
cage formed by neighbouring particles, the microscopic nature of 
the slow β relaxation process remains elusive despite it being widely 
observed in glassy materials.

Since the pioneering work of Johari and Goldstein, slow β relaxa-
tion has been extensively studied in polymetric, organic, ionic, metallic 
and atomic glasses by various experimental methods, such as dielectric 
spectroscopy, dynamic mechanical spectroscopy, nuclear magnetic 
resonance, quasi-elastic nuclear resonant scattering7 and dynamic 

light scattering8. It appears as a secondary peak or a high-frequency 
excess wing of the α peak in the imaginary part of the dielectric relaxa-
tion spectra. Various interpretations of this relaxation mode have 
been proposed, including the intramolecular motion for polymer 
glasses9, restricted molecule reorientation for organic glasses10–12 and 
string-like translational motion for metallic glasses13–16. However, it was 
also suggested that the dominant slow internal dynamics belongs to 
early α relaxation, that is, extended or localized hopping motion in 
soft spots for model glass systems4,6,17 and T1-topological excitation 
for soft biological glasses18,19, serving as the precursors of α relaxation 
and showing further slowing down deep in a glass state. Various theo-
retical ideas have also been proposed to explain slow β relaxation, but 
without consensus. They include the cooperative process of motions 
coupled together by interparticle interactions in the coupling model20, 
the low-energy part of α relaxation in the random first-order transition 
theory1, the precursor of α relaxation through dynamic facilitation21,22, 
the motions associated with the Gardner-like transition3,23–25 and the 
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of τ0 and a is the average interparticle distance. After a time interval 
of τs, we take the bottom plate away and record the static configura-
tion locked by the tiny wall–disc friction (0.25% of the repulsive force 
between the particles). This state is very close to the minima of the 
system’s PEL in the absence of friction. This unique procedure mimics a 
‘perturbation-lock’ procedure (Fig. 1d(i),(ii)). We repeat this procedure 
another 1,000 times to follow the particle-level dynamics. Thus, we 
experimentally follow the ultralong-time relaxation dynamics with 
high accuracy, using τs as the primary time unit. We note that we can 
carefully adjust the perturbation strength such that the α-relaxation 
time at c = 0 is a bit longer than 106τ0, which is comparable with the 
relaxation time of a deeply supercooled liquid near the glass transition 
in previous simulations21,22,26,33. As an example, we show the dynamics 
at a high perturbation strength (Extended Data Fig. 1b).

As evidenced by the long-time MSD behaviours (〈Δr2(t)/a2〉)  
(Fig. 1c), which covers a 103 times longer time than that shown in 
Fig. 1b, as the pinning fraction c increases, the long-time relaxation 
dynamics (Δt ≈ 500τs ≈ 106τ0) changes from α-type slow diffusion (MSD 
approaches 0.5 × 10−1) at c ≤ 1.2% to small-amplitude, extremely slow 
subdiffusion (a factor of 100 reductions of MSD) at c ≈ 3.6%. Thus, 
increasing the pinning fraction c brings the system to a glass state, that 
is, induces the glass transition4,26.

Interestingly, the small-amplitude structure adjustments in our 
system are different from the trivial liquid-like diffusion and pure 
vibrations. They are characterized by a hierarchical character with 
multiple-length-scale particle movements, shown via the schematic of 
the PEL picture (Fig. 1d). During 103τs at c ≤ 3.0%, we can find two types 
of particle movement. One is a cage-breaking-type particle movement 
(typically, Δr ≥ 0.3a) that constitutes the lowest-energy part of α relaxa-
tion1. The other is much-smaller-amplitude particle jumps (Δr ≈ 0.1a; 
either coupled or not coupled with cage-breaking motion) that corre-
spond to barrier crossings between shallow basins of the PEL, that is, 
local-bond-breaking motion (Fig. 1d(iii)). The large cage-breaking-type 
movement (Δr ≥ 0.3a) vanishes at around c* ≈ 3.0%, whereas the smaller 
jumps (Δr ≈ 0.1a) still occur even at c > c* (Fig. 1d(iii),(iv)). Thus, we 
determine the pinning-induced glass transition point as c* ≈ 3.0% above 
which internal non-diffusive modes dominate the slow relaxation. 
This identification is further supported by the particle-level Van Hove 
correlation function34, namely, Gs,i(r, t), for a group of particles i that 
have a narrow range of 〈Δr2(t)〉 (Δt = 500τs). The long-time motion of 
the fastest particles forms a second peak or shoulder at a characteristic 
moving distance (Extended Data Fig. 1c–e).

Here we note that our system is confined by a rigid circular wall, 
and the circular wall reduces the amplitude of nearby particle motions 
through a short-range layering effect (Extended Data Fig. 2a–e). How-
ever, we find that the wall does not change the glass transition point c*; 
instead, the transition is more distinct for layers close to the wall, which 
suggests that the wall changes the fragility of the transition alone but 
not the glass transition point35.

Classification of elementary particle rearrangements
Interestingly, we find that the dominant jump-like internal structure 
relaxation, such as cage-breaking and local-bond-breaking processes, 
occurs in the form of the so-called T1 events18 (known as the shear trans-
formation zone). A T1 event is a primary type of structural adjustment of 
four neighbouring particles {h, k, m, n} that accompanies a topological 
change for the two diagonal bonds, as illustrated by the four-particle 
tetragon’s Voronoi tessellation (Fig. 2a–d, insets). The short bond {h, k} 
becomes the long bond, and the long bond {m, n} becomes the short 
bond after the event. We characterize the amplitude of a T1 event by 
lsl, which is the time average of the normalized difference between 
the long diagonal length llong and short diagonal length lshort of the T1 
tetragon, namely, lsl = 〈(llong − lshort)/llong〉 (note that particle i may have 
two values of lsl(i) if it is involved in two different T1 events). Here we 
note that the ‘bonds’ we defined here are from the neighbour analysis 

restricted reorientation motion within metastable islands11. Thus, we 
may say that the origin of slow and subtle internal relaxations in a glassy 
system has remained unclear despite intensive research.

Such a diversity of interpretations may come from the difficulty 
in microscopically accessing such subtle intermediate motion. Due to 
the slow and subtle nature of the slow β mode, its observation requires 
precise isolation from both fast β and slow α modes, whose timescales 
are separated by many orders of magnitude. However, experimentally 
accessing subtle particle motions in real space over such a vast time-
scale in a glassy state is highly challenging.

To overcome this difficulty, we specially designed a two- 
dimensional (2D) binary granular system composed of magnetic discs, 
enabling precise measurements of tiny structure adjustments over an 
ultralong time. Instead of changing the particle density, we introduce 
a random particle pinning to this system to induce glass transition 
in a controlled manner26–32. We excite particle motion by applying a 
small-enough volumetric mechanical perturbation, mimicking thermal 
excitation at low temperatures. This system allows probing the relaxa-
tion dynamics from close to glass transition to deep in a glass state. We 
confirm that flow-like particle motion becomes increasingly difficult 
to occur and eventually frozen at the glass transition with increasing 
fraction of pinned particles c. This ceasing of cage-breaking motion is 
accompanied by the emergence of a restricted dynamic mode char-
acterizing the slow β relaxation. We find that the emergence of bond 
rigidity leads to the freezing of structure relaxation and the activation 
of slow β motion.

Results
Model granular system and its characterization
The details of our experimental setup are as follows. We confine a 
binary mixture of magnetic discs (diameter, dlarge = 10.00 ± 0.10 mm, 
dsmall = 7.00 ± 0.10 mm, height h = 2.00 ± 0.05 mm, number ratio 
Nlarge:Nsmall = 1:1) in a 2D plane at an area fraction of 12% (Fig. 1a). The 
discs interacting with the repulsive pair interaction in the confining 
plane, U(r) ≈ r−3, form an amorphous solid state without any direct 
particle–particle contacts (Extended Data Fig. 1a). The particle–wall 
(smooth) static friction coefficient is around μs ≈ 0.1, and the resulting 
friction force ffri is about 0.25% of the repulsive force fsys acting between 
the particles. We designed a special mechanical perturbation setup, 
which applies a perturbation to each particle of the upper 2D sample 
through attractive magnetic interactions by moving a bottom plate 
(velocity V) to which magnetic discs (interparticle distance D) are fixed. 
The mechanical perturbation strength 〈fp〉 is adjusted by the vertical 
distance h1 to the sample plate. A small-enough perturbation strength 
(ffri < fp ≪ fsys) effectively acts as thermal excitation typical to a low tem-
perature. Thus, we set the mechanical perturbation strength to be 
the effective temperature corresponding to a thermal system slightly 
above the glass transition.

To study glass transition in this system, we introduce particle pin-
ning under the above fixed strength of mechanical perturbation (that is, 
at the fixed effective temperature). We pin a small number of particles 
randomly chosen from a configuration relaxed for a long-enough time 
(Fig. 1a). This procedure allows us to realize a pinning-induced glass 
transition by changing the fraction of pinned particles4,26–32. With this 
pinning method, we can probe the relaxation dynamics from slightly 
above the glass transition to deep in a glass state.

Here we define the key timescales to describe the relaxation 
dynamics in our experiments. Furthermore, τ0 ≈ D/V is the average 
interval of particle collisions induced by the perturbation from the 
moving bottom plate, and τs (usually set as τs ≈ 2 × 103τ0) is the dura-
tion of continuous mechanical perturbation in the unit of τ0. Within 
τs, particle movement is restricted in a small basin of the potential 
energy landscape (PEL). For example, as shown in Fig. 1b, the system 
behaves as a solid, as evidenced by the three-decade plateau in the 
mean square displacement (MSD), 〈Δr2(t)/a2〉, where time t is in units 
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using Voronoi methods, different from chemical bonds with specific 
energy and length.

For all the observed T1 events occurring below and above the 
pinning-induced glass transition, the relation between the amplitude 
of a T1 event (lsl) and the particle’s moving distance (Δr(i)) during the 
event can be unified into a single master curve with some scatter for 
c ≈ 1.2%, c ≈ 2.4%, c ≈ 3.6% and c ≈ 4.8% (Fig. 2a–d, respectively). We also 
show another representation using the particle’s total displacement  
ΔR (ΔR = Σi={h,k,l,m}∣Δr(i)∣) for a tetragon (Extended Data Fig. 3a–d).

Based on the correlation among lsl(i), Δr(i) and the number of 
neighbour changes during the T1 event, Nb(i), we can classify T1 events 
into two types: one type is large-ratio T1 events responsible for cage 
breaking (lsl ≥ 0.2, Δr ≥ 0.3a; particle jump involves at least two T1 
events), which are active only above the glass transition point (that 
is, for c ≤ c*), as shown in Fig. 2a (c ≈ 1.2%) and Fig. 2b (c ≈ 2.4%). The 
other type is small-ratio T1 events responsible for local bond break-
ing (lsl < 0.2, Δr < 0.3a and Nb(i) ≤ 1), which are active above the glass 
transition point (that is, for c ≤ c*) (Fig. 2a,b) and remain prevalent even 
below the glass transition point (that is, for c > c*) (Fig. 2c (c ≈ 3.6%) 
and Fig. 2d (c ≈ 4.8%)). Note that the blue symbols (Fig. 2, Nb(i) ≈ 0) 
represent reversible T1 events that are responsible for a reversible 

bond break, and the reversibility becomes the dominant feature of 
T1 events for c > c*. The systematic change in the master curves with 
increasing pinning fraction c (Fig. 2a–d) suggests that the reduction 
in internal relaxation is a consequence of eradicating large-ratio T1 
events, as supported by the cluster analysis of the two types of T1 
event for all the samples with reducing <Δr2(t)/a> (Extended Data 
Fig. 3e–g). These results indicate that the glass transition is accom-
panied by the change in a T1-event type from the cage-breaking to 
local-bond-breaking-only type.

Now, we focus on the characteristics of the two types of T1 event. 
Large-ratio T1 events usually occur cooperatively, causing a string-like, 
cooperative jump motion of fast-moving particles (Fig. 2f, orange 
particles; Δt ≈ 103τs); the string’s neighbouring particles (blue parti-
cles) experience fewer neighbour changes and show smaller jumps. 
The elementary excitation of this type of motion1,36 corresponds to a 
single cage-breaking event (Fig. 2f), which serves as the precursor of a 
compact slowly flowing cluster (Fig. 2e, red, orange and green particles; 
Δt ≈ 103τs). This process can also be seen from the temporal change 
in the T1-event frequency (Extended Data Fig. 3h; c ≤ c*). A compact 
cluster exhibiting α-type relaxation (Fig. 2e) is created by a sequen-
tial occurrence21,22 of several elementary large-ratio T1 excitations 
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Fig. 1 | Experimental details and reduction in internal structure relaxation 
across a pinning-induced glass transition. a, Experimental setup. Bidisperse 
magnetic discs interacting with a long-range repulsion (U(r) ≈ r−3) form an 
amorphous solid state under 2D confinement in the upper layer. A periodically 
moving bottom plate with disc magnets applies a suitably, sufficiently small 
mechanical perturbation to each particle in the upper layer that mimics thermal 
agitation. The particle–wall friction force ffri, perturbation force fp and particle–
particle interaction force fsys in the sample satisfy the relation of ffri < fp ≪ fsys. 
Changing the pinning density, we control the relaxation dynamics from slightly 
above the glass transition to very deep in a glass state. Here τ0 is the characteristic 
interval of ‘collision’ due to perturbation and τs is the duration of periodic 

perturbation in the unit of collision interval (usually, τs ≈ 2 × 103τ0). After a time 
duration of τs, we take the bottom plate away and record the static configuration 
that is locked by the tiny particle–wall friction. This unique procedure mimics a 
‘perturbation-lock’ procedure, and we repeat this procedure for another three 
decades. b, Typical MSDs of 〈Δr2(t)〉/a2 of our pinning samples within τs. The 
plateau has a very small value (around 10−4), which is kept over three decades 
within τs. c, Typical long-time MSD over 103τs. The long-time relaxation dynamics 
changes from diffusive to solid-like with an increasing pinning fraction c.  
d, Schematic of the relaxation dynamics across the pinning-induced glass 
transition from the PEL perspective. Three typical particle trajectories during 
103τs are shown in (iii) and (iv).
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(Extended Data Fig. 4a). Note that the string-like elementary excitation 
can also develop into a string-like larger cluster at a similar pinning 
fraction (Extended Data Fig. 4e). In contrast, small-ratio T1 events only 
cause localized neighbour changes, that is, reversible bond-breaking 
motions (Fig. 2g,h; Δt ≈ 103τs). Thus, a large-ratio T1 event is a distinct 

sign of cage breaking, allowing us to classify the state of a system into 
the slowly flowing state (c ≤ c*) or glass state (c > c*) by the presence 
or absence of large-ratio T1 events, respectively. For c > c*, we also see 
further slowing down of small-ratio T1 event excitation with increasing 
pinning fraction (Extended Data Fig. 3i).
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Fig. 2 | Pinning-fraction dependence of the internal relaxation dynamics 
profiles. a–d, Unified Δr–lsl relation of T1 events (c ≈ 1.2% (a); c ≈ 2.4% (b); c ≈ 3.6% 
(c); c ≈ 4.8% (d)). The largest T1 event in each panel is shown in the inset. The T1 
events are classified into two types based on the correlation among lsl(i), Δr(i) 
and Nb(i): one is large-ratio T1 events responsible for cage breaking (lsl(i) ≥ 0.2, 
Δr(i) ≥ 0.3a; particle jumps involve at least two T1 events), which are only active 
at c ≤ c* (a,b). The other is small-ratio T1 events responsible for local bond 
breaking (lsl(i) < 0.2, Δr(i) < 0.3a and Nb(i) ≤ 1), which are also active at c ≤ c* (a,b) 
and further prevalent even at c > c* (c,d). Note that the blue symbols (Nb(i) ≈ 0) 
represent reversible T1 events. The unified master curve (black dotted line) 
in a–d suggests a close relation of the internal relaxation reduction with the 
eradication of large-ratio T1 events with increasing pinning, which changes 
the character of T1 excitation from ‘cage breaking’ to ‘locally bond breaking’. 
e–h, Spatial illustration of the relaxation dynamics (Δt ≈ 103τs) with Δr(i) (arrow 

length and direction), lsl(i) (black and grey tetragons representing large-ratio 
and small-ratio T1 events, respectively) and Nb(i) (colours of the particles and 
their displacements) for α-type relaxation (e; c ≈ 1.2%), cage-breaking relaxation 
(f; c ≈ 2.4%), relaxation just approaching a glass state (g; c ≈ 3.6%), and local and 
reversible bond-breaking relaxation (h; c ≈ 4.8%). Voronoi cells of the particles 
with Nb(i) > 0 at t = 0 (top) and t = 103τs (bottom) are shown in each panel of Δr(i). 
Accumulation of sequential cage-breaking events forms an α-type relaxation 
cluster in e. A string-like single cage-breaking event is formed by spatially 
extended large-ratio elementary T1 events (black tetragons) in f (the large red 
and orange arrows pointing to the edge of the Voronoi cells at t = 0), and the 
excitation of this type serves as a precursor of α relaxation (e). Small-ratio T1 
events (grey tetragons) are localized and can persist into the glass state (g,h).  
The displacement fields in g and h are magnified four times.
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Impact of interaction potential on local particle dynamics
Here we consider the effect of interaction range on the above scenario. 
In our system with long-range soft magnetic interactions, the slow 
dynamics in the form of small-ratio T1 events appears at c ≤ c* and per-
sist at c > c*, that is, τSmall-T1 ≈ 105τ0 at c*, indicating that they belong to a 
slow β mode. To see what happens in systems with short-range interac-
tions, we have performed experiments with 2D binary poly-N-isopropyl 
acrylamide (PNIPAM) colloidal systems (a model supercooled colloi-
dal system with a short-range repulsive interaction; Methods). In this 
case, we find that the small-ratio T1 events are activated at the fast β 
regime (τSmall-T1 < τ0), whereas clusters of large-ratio T1 events are slower 
and contribute to the string-like excitation (Extended Data Fig. 5a–f; 
note the red and orange strings of Δr formed in Extended Data Fig. 5f). 
Moreover, the string-like excitation can be reversible or directly serves 
as the precursors of α relaxation (Extended Data Fig. 5g–i; note the 
recovery of Δr at longer times (Extended Data Fig. 5g) for the orange 
string-like excitation in Extended Data Fig. 5f). These findings suggest 
that the slow activation process of small-ratio T1 events appears only 
deep in a glass state for systems with short-range interactions, which 
is consistent with the previous observation of sparse, localized defect 
excitations deep in a glass state6,37. Moreover, the typical MSD plateau 
value at the glass transition in our system with long-range interactions 

(〈Δr2(t)/a2〉 ≈ 10−4) is 100 times smaller than the one in systems with hard, 
short-range interactions (〈Δr2(t)/a2〉 ≈ 10−2) (refs. 6,37) (Extended Data 
Fig. 6a–c, left). Thus, interaction range and softness are critical param-
eters controlling whether the reversible bond-breaking process is fast 
or slow, that is, whether it belongs to fast or slow β modes, respectively. 
On the other hand, the string-like cage-breaking process universally 
serves as a precursor of α relaxation, irrespective of the interaction 
softness and range (Extended Data Fig. 5f–i).

We have noticed that besides the cage-breaking and bond- 
breaking processes, there is another type of structure change that does 
not accompany a topological change in the neighbour–neighbour  
connection network: passive displacement, that is, local elastic 
deformation, intrinsically coupled with T1 events. It remains elusive 
how this type of motion contributes to slow β and early α relaxa-
tions. To address this issue, we search for a possible relaxation mode 
linked to local deformation. To this end, we regard one neighbour– 
neighbour pair, {h, k}, as a two-particle ‘bond’, and decompose the 
bond motion, {rh(t + Δt) − rh(t), rk(t + Δt) − rk(t)}, where rh and rk are the 
position of particles h and k, respectively, into three parts: bond-length 
change Δlh,k, bond reorientation Δθh,k and translational motion Δph,k 
(Methods provides the definitions). Thus, the local deformation 
can be probed by these three elementary motions of the ‘bonds’. 
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Fig. 3 | Four-particle tetragonal representation of the relaxation mode.  
a, Microscopic information of structural adjustment illustrated by a four-particle 
tetragon in fast-moving and slow-moving regions. From left to right: large-ratio 
T1 mode (Δlh,k ≈ −Δlm,n), small-ratio T1 mode (Δlh,k ≈ −Δlm,n), FM (Δlh,k ≈ −Δlm,n 
and lh,kΔθh,k ≈ lm,nΔθm,n) and RM (Δlh,k ≈ 0, Δθh,k ≈ 0 or Δlm,n ≈ 0, Δθm,n ≈ 0). b, The 
{Δlh,k, Δlm,n}−ΔR counting map of the relaxation mode. From left to right: c = 1.2%, 
c = 2.4%, c = 3.6% and c = 4.8%. The Δlh,k−Δlm,n counting maps are shown in the 
insets. The orange dashed lines indicate K = ±1/2, whereas the white dashed lines 

indicate K = ±1. Evidently, the large-ΔR tetragon follows the T1 mode at c ≤ c*, 
whereas the large-ratio T1 mode vanishes, and a signature of RM for small-ΔR 
tetragon emerges at c > c* (insets). Note that the x-axis range is different between 
the two left and two right panels. c, ΔLh,k/ΔR–ΔLm,n/ΔR counting map of the 
relaxation mode. From left to right: c = 1.2%, c = 2.4%, c = 3.6% and c = 4.8%. The 
lh,kΔθh,k−lm,nΔθm,n counting maps are shown in the insets. The emergence of rigid 
bonds (ΔLh,k ≈ 0 or ΔLm,n ≈ 0) and development of RM at c > c* are evident.
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For simplicity, we use the four-particle tetragon model {h, k, m, n}  
(ref. 18) (Fig. 3 shows the T1 events). Here the two diagonal bonds {h, k} 
and {m, n} correspond to the nearest- and second-nearest-neighbour 
bonds, respectively.

Now, we study how the bond motion gives rise to tiny structure 
relaxation. We find two distinct relaxation modes characteristic of the 
slowly flowing and glass states of our system. In the slowly flowing 
samples (c ≤ 3.0%) where large-ratio T1 events (the precursor of α relaxa-
tion) exist, a T1 tetragon is characterized by the relations Δlh,k ≈ −Δlm,n 
and Δlh,k ≈

ΔR
2

 (Figs. 3a(i)(ii) and 3b(i)(ii); here ΔR = Σi={h,k,l,m}∣Δr(i)∣ is the 
total moving distance of the four particles), and a small-ΔR tetragon 
(slowly moving region) similar to Δlh,k ≈ −Δlm,n (Fig. 3a(iii) and Fig. 3b(i)
(ii) (insets)). That is, one bond elongates whereas the other shrinks by 
a similar amount. In contrast, in the glass-state samples (c > 3.0%) 
without large-ratio T1 events, a small-ΔR tetragon is characterized by 
another distinct signature: Δlh,k ≈ 0 or Δlm,n ≈ 0 (Fig. 3a(iv) or Fig. 3b(iii)
(iv) (insets)), pointing to the restriction of bond deformation along 
specific directions. In this case, only one of the two bonds changes the 
length, and the other does not.

The bond reorientational motion Δθ also varies similar to Δl. 
In slowly flowing samples (c ≤ 3.0%), we find that lh,kΔθh,k ≈ lm,nΔθm,n  
(Fig. 3c(i)(ii) (insets)). Thus, bonds {h, k} and {m, n} deform simi-
lar to the T1 event, which we identify as a flexible mode (FM) com-
mon to easy structure relaxation. In contrast, in the regime where 
a large-ratio T1 event is absent (c > 3.0%), the relative motions, Δθ 
and Δl, are both depressed for one of the two diagonal bonds. Thus, 
the relative part of the bond motion in the glass-state samples is 
characterized by either

ΔLh,k ≈ 0 (ΔLh,k =√Δl2h,k + (lh,kΔθh,k)
2)

or

ΔLm,n ≈ 0 (ΔLm,n = √Δl2m,n + (lm,nΔθm,n)
2) ,

that is, no relative motion of one of the two bonds. These two relations 
can be confirmed by the emergence of two distinct patches close to the X 
and Y axes, respectively (Fig. 3c(iii)(iv); Δt ≈ 200τs). We note that the spon-
taneous fluctuation of a rigid patch is the first to occur within a timescale 
where the slow β mode is active, but the early α mode is not yet present—a 
sign that the system behaves as an ‘experimental’ glass that exhibits slow 
β relaxation (Extended Data Fig. 6a–c). Moreover, these ‘rigid’ bonds 
are spatially and temporally fluctuating in the system, and they are con-
nected to form a percolated elastic network resisting the large-ratio T1 
mode deep in a glass state (Extended Data Fig. 7)38. Structure relaxation, 
in this case, can be thought of as following a restricted mode (RM) under 
partial freezing of inside-cage motion. The enhancement in RM further 
decreases the frequency of reversible bond-breaking events (compare 
Extended Data Fig. 3 with Extended Data Fig. 7). Thus, as one goes deeper 
into the glassy state, the inside-cage motion is increasingly frozen, slow-
ing down the slow β relaxation. In contrast to the system with long-range 
interactions, both RM and small-ratio T1-type slow β mode are absent in 
a supercooled liquid state for a system of short-range interactions and 
present only deep in a glass state (Extended Data Figs. 5a–i and 6a–c). 
This feature that these two modes appear and disappear together, hand 
in hand, suggests their inseparable relationship. Thus, we conclude that 
RM characterized by rigid bonds is a prerequisite for the emergence of 
the small-ratio T1-type slow β mode.

For large-ΔR tetragons, due to the dominance of the large-ratio T1 
mode, their Δlh,k/ΔR or Δlm,n/ΔR should have an upper or lower bound 
of 1/2 or −1/2, respectively. In contrast, for low-ΔR tetragons, due to 
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tan–1(ΔLm,n/ΔLh,k) ≈ π/4 whereas RM has peaks at around tan–1(ΔLm,n/ΔLh,k) ≈ 0 or 
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relaxation behaviours among amorphous systems with soft (Type I) and hard 
(Type II) interactions and crystalline systems.
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the emergence of the RM mode in slowing-moving regions, Δlh,k/ΔR 
or Δlm,n/ΔR should have an upper or lower bound of 1 or −1 (Fig. 3b, 
dashed lines). Consequently, as ΔR reduces, the switching should occur 
from K ≈ 1/2 (we define K = max(Δlh,k/ΔR)) to K ≈ 1 at a certain threshold 
value of ΔR†. We can indeed see this switching in the K−ΔR master curve  
(Fig. 4a,b). Above ΔR†, the cage-breaking dynamics at c ≤ c* is gov-
erned by the T1 mode; thus, we can observe a K ≈ 1/2 plateau at c ≤ c*  
(Fig. 4b). Moreover, the disappearance of the K ≈ 1/2 plateau coincides 
with the emergence of a distinct RM mode at c > c*, which is evident in the 
probability distribution of FM and RM for all the samples (Fig. 4c). This 
transition behaviour suggests that the partial freezing of inside-cage 
motion and the disappearance of large-ratio T1 events are the double 
signatures that the system reaches a glass state with the slow β mode. 
This double signature at a particle level indicates an intrinsic connection 
between the initial α-relaxation stage and the faster internal β relaxation.

Discussion
The above finding can be intuitively explained as follows. The extra 
volume required for easy structure relaxations (free volume) is partially 
created by the inside-cage motion; thus, a string-like structure relaxa-
tion requires quasi-voids at the ends of a string39 and the cooperation 
of inside-cage motion30,39–43 that serves as a reservoir for facilitating 
free-volume transport. As the reservoir’s capacity reduces, rigid bonds 
and the slow β mode emerge, the free-volume transport becomes dif-
ficult and a glass state is formed. This physical picture is consistent 
with the scenario that slow β relaxation is a type of restricted motion 
in regions of high glassiness of a supercooled liquid11.

Here we stress that this double signature is absent for a crystalline 
state with dislocations. In our crystalline samples, we find that 
Δlm,n/Δlh,k ≈ √3  (it should be an elastic mode); thus, there are no  
modes like FM and RM. More importantly, the relaxation of defective 
structures, that is, dislocations, belongs to large-ratio T1 events, and 
small-ratio T1 events are rarely seen in the system’s relaxation. There-
fore, the amorphous nature of the ‘solid region’ and the existence of 
extended or localized, complex ‘soft spots’ are the very origin of the 
unique small-amplitude relaxations and the resulting multistep struc-
ture relaxations, which are essentially different from its crystalline 
counterpart (Extended Data Figs. 5, 6 and 8 show a comparison of the 
modes in disordered and crystalline systems).

In our work, we consider the glassy dynamics in granular magnetic 
systems and colloidal suspensions, which serve as typical glass formers 
of soft and hard interactions. This allows us to classify glass formers 
into two limiting types, namely, Type I and Type II systems, according 
to the role of the subtle internal relaxation, that is, its contribution to 
the fast or slow β mode. First, we consider deeply supercooled liquids 
near the glass transition point Tg. For a Type I liquid, the slow activa-
tion of the small-ratio T1 events and the slower large-ratio T1 events 
can coexist, respectively, due to the small amplitude of inside-cage 
motion and the ease-of-flow characteristic of the potential softness. 
This is not the case for a Type II liquid due to the large amplitude of 
inside-cage motion. Thus, in a deeply supercooled state, the Type I 
liquid has a small-ratio T1-type slow β mode, whereas the Type II liquid 
has only a large-ratio-T1-type slow-subtle relaxation. This difference in 
the inside-cage motion also affects the dynamics in a glass state. For 
a glass state of the Type I system, we can always see the slow β mode, 
but it is not necessarily the case for the Type II system. For the Type II 
system, the small-ratio T1-type slow β mode should become evident 
only in a ‘deep’ glass state where the MSD plateau becomes so low that 
the large-ratio T1 events vanish and the small-ratio T1 events become 
dominant, slow and subtle relaxations. Thus, the critical factor sepa-
rating Type I and Type II systems is the amplitude of the inside-cage 
motion, that is, the MSD plateau level, controlled by the potential 
softness. This scenario is supported by the microscopic information 
of internal relaxations observed in both amorphous and crystalline 
systems (Fig. 4d,e).

Concerning this classification, it is worth noting the recent finding 
of the difference in slow β relaxation between amorphous phase-change 
materials (PCMs) and non-PCM chalcogenide glasses44,45, which showed 
that PCMs with softer bonds have much more pronounced slow β 
relaxations than non-PCMs with more rigid covalent bonds. Our sce-
nario naturally explains this finding since more rigid restrictions on 
particle motion should make slow β relaxations weaker.

Our observations also suggest the universality of large-ratio T1 
events serving as the precursors of α relaxation and the complexity 
of small-ratio T1 events that can be either fast or slow β relaxations, 
depending on the amplitude of inside-cage motion. Most glassy materi-
als should lie between the two limits (Type I system with soft, long-range 
interactions and Type II system with hard, short-range interactions). 
It is an interesting question what happens in the intermediate-range 
interaction case.

Conclusion and outlook
In summary, we have experimentally found a qualitative change in the 
character of local structure adjustments of four neighbouring particles 
across a pinning-induced glass transition and revealed a non-trivial 
connection between structure relaxation modes that are intrinsic and 
unique to the glass system. We have shown that the emergence of bond 
rigidity kills string-like cage-breaking motion serving as a precursor 
of α relaxation. This emergence of rigid bonds accompanied by the 
freezing of structure relaxation can be regarded as a consequence of 
mechanical self-organization towards the emergence of solidity, that 
is, the percolation of force-bearing rigid bonds38. Increasing the pin-
ning fraction, which should have a similar effect as lowering the tem-
perature26,27,32, should increase the bond rigidity46, thus enhancing the 
glassy stability. In supercooled liquids, dynamic heterogeneity develops 
below the onset temperature of the super-Arrhenius behaviour. Slow 
α-relaxation regions with high glassy structural order18,19,33,47–49, that is, 
low configurational entropy, can have transient rigidity characterized by 
the large Debye–Waller factor, that is, the small amplitude of inside-cage 
motion50,51. Considering that the small amplitude of inside-cage motion 
is necessary for activating small-ratio T1 events, this may explain the 
emergence of the slow β mode below the onset temperature and its spa-
tial heterogeneity, which supports the argument made in another work11.

Concerning the last point, another critical feature we find in a glass 
state is that particle motion in a glass state involves non-vibrational 
internal dynamics4,5,52,53, that is, small-ratio T1 event and other coopera-
tive bond-reorientation motion, besides vibrational motion. Previous 
studies suggested that many parameters, such as bond-orientational 
order47, local packing capability33,48, ‘softness’ parameter from machine 
learning49 and parameter from local geometry18,19, serve as good struc-
ture indicators of α relaxation. It implies that these indicators may also 
capture the information of tiny structure adjustments, that is, the bond 
reorientational motion, which may also be important in regions of 
slow structure relaxation in a supercooled liquid11. It looks natural to 
expect the link of high angular order33,47,48 to the rigidity of bonds and 
the constraint on bond reorientation. It is interesting to see whether 
these structure indicators can predict the double signature, that is, the 
disappearance of cage breaking and the emergence of bond rigidity, 
for a glassy state. Their link to the Debye–Waller factor, that is, solidity, 
suggests such a possibility.

In this work, we focus on systems with isotropic interactions. The 
slow β relaxation of systems of anisotropic interactions, relevant for 
molecular systems, remains a critical issue for future research.
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Methods
Experiments with magnetic discs
Particulate glassy systems that enable single-particle-level dynamic 
observation, such as colloids39,54,55, granular systems and emul-
sions5,56,57, have provided valuable particle-level information on vari-
ous types of glassy dynamics, including dynamic heterogeneity in a 
supercooled liquid31,54, micromechanical responses of glasses under 
shear or non-equilibrium excitations5,34,56, Gardner-like dynamics56,58 
and quasi-localized vibrational modes57,59. Various experimental 
techniques, such as particle pinning30,31 and the introduction of 
activity and other non-equilibrium excitations34,60, have also been 
employed to control glass transition. However, combining a high 
spatial resolution with an ultralong-time observation has been chal-
lenging in colloidal systems because of many technical problems, 
such as gradual solvent evaporation and a slight colloid–solvent 
density mismatch that cause the density change or flow of the sam-
ple. A mechanical-driven granular system is suitable for long-time 
single-particle-level observation because it is free from these prob-
lems. However, for hard-sphere particles, the particle–particle 
contact friction brings complexity to the glassy dynamics. We use 
granular particles interacting with long-range repulsion to realize a 
system free from interparticle contact friction.

To this end, we use a unique experimental setup (Fig. 1a), in which 
a 2D binary magnetic-disc mixture confined in an upper sample cell is 
mechanically perturbed by the motion of the bottom plate through 
long-range magnetic interactions. We fix the perturbation strength 
so that the system is slightly above the glass transition point. Then, 
under this perturbation, we change the fraction of pinned particles to 
control the effective temperature of the system. This specially designed 
system allows us to precisely measure local structural rearrangements 
over an extremely long time, covering from slightly above to far below 
the pinning-induced glass transition.

To probe structure relaxations in a crystalline system with disloca-
tions, we use large magnetic discs (10 mm diameter) employed in our 
glass system. Then, we form a 2D hexagonal crystalline structure with 
dislocations (Extended Data Fig. 5g,h). We adjust the perturbation 
strength to a value such that the MSD plateau value is around 4 × 10−4 
(Extended Data Fig. 6d).

Experiments with colloidal particles
The 2D monolayer colloidal sample is prepared by loading a 1:1 binary 
mixture of PNIPAM particles (1.0 and 1.3 μm at 22 °C) between two 
coverslips. The samples are then hermetically sealed using optical 
glue (Norland 63). The interactions between PNIPAM particles can be 
characterized as short-range hard-core repulsions59. The sample has a 
packing fraction of 0.88 at ambient temperature and is continuously 
imaged with standard bright-field microscopy at the rate of 20 frames 
per second for a duration of 40,000 frames. The trajectory of each 
particle is extracted by particle-tracking techniques. Note that the 
colloidal sample is not suitable for ultralong-time single-particle-level 
observation.

Structure and dynamic analyses
The global relaxation dynamics is characterized by the MSD of all the 
particles, ⟨Δr2(t)⟩ = 1

N
ΣN
j=1⟨[ri(t) − ri(0)]

2⟩, where N is the number of par-
ticles and ri(t) − ri(0) is the displacement, Δr(i), during a lag time t for 
particle i.

We use the self-part of a particle-level Van Hove function Gsi to 
quantify the dynamics of the fastest mobile particles: Gsi(r, t) =

1
Nf
ΣNf
i=1

⟨δ(r − |ri(t) − ri(0)|)⟩, where δ is the delta function and Nf is the number 
of particles that have a narrow range of ⟨Δr2i (t)⟩ (Δt = 500τs). It efficiently 
probes the ‘caged-then-jumping’ dynamics at specific distances. Purely 
vibrational motion exhibits a Gaussian distribution in this function, 
whereas the ‘caged-then-jumping’ motion should form a second peak 
or shoulder at a characteristic moving distance.

Relaxation-mode analysis
We define the neighbours of particle i at each time t through the Voro-
noi tessellation. For particle i, the neighbour-change parameter Nb(i) is 
defined as the number of neighbours that are lost and gained after Δt.

We use the four-particle tetragon model to quantify the struc-
tural adjustment modes. Four neighbouring particles, {h, k, m, n}, 
form a tetragon. The tetragon has two diagonal bonds. We identify the 
bond {h, k} as the nearest-neighbour diagonal bond and {m, n} as the 
second-nearest one at the initial time. We define the total moving dis-
tance ΔR for each tetragon during a lag time Δt as ΔR = Σi={h,k,l,m}∣Δri(Δt)∣. 
On the T1 event, {h, k, m, n} experience a topological change, by which 
the two diagonal bonds {h, k} and {m, n} become the second-nearest and 
nearest diagonal bonds, respectively. We characterize the amplitude of 
a T1 event by lsl, which is the time average of the normalized difference 
between the long diagonal length llong and short diagonal length lshort 
of the T1 tetragon, namely, lsl = 〈(llong − lshort)/llong〉 (note that particle i 
may have two values of lsl(i) if it is involved in two different T1 events).

For each bond {h, k}, we decompose the bond motion as {rh(t + Δt) −  
rh(t), rk(t + Δt) − rk(t)}, where rh and rk are the position of particle h and 
particle k, respectively, into three parts: bond-length change Δlh,k, bond 
reorientation Δθh,k and translational motion Δph,k. Here Δlh,k = ∣rh 
(t + Δt) − rk(t + Δt)∣ − ∣rh(t) − rk(t)∣; Δθh,k = θ(t + Δt) − θ(t), where θ is the 
angle of vector rh − rk with respect to the x axis; and Δph,k =
(|rh(t+Δt)+rk(t+Δt)−rh(t)−rk(t)|)

2
 . For simplicity, we define the relative part of 

bond motion ΔLh,k as ΔLh,k = √Δl2h,k + (lh,kΔθh,k)
2 , where lh,k is the 

time-averaged bond length.
The emergence of the rigid bond is characteristic of spatiotempo-

ral fluctuations of a glass state. Within our observation time of 103τs, we 
can choose a time interval Δt as Δt ≈ 200τs, and use the ΔLh,k/ΔR−ΔLm,n/
ΔR counting map (Fig. 3c) to pick up the bonds in a ‘rigid’ state, which 
are spatially and temporally fluctuating in the system. Thus, for a spe-
cific bond, we can define its rigidity through the time over which its 
dynamics belong to RM and not FM. We define a bond with more than 
15% of its time fluctuating on a ‘rigid’ state as a ‘rigid’ bond (Extended 
Data Fig. 5 shows their spatiotemporal fluctuations).

String-like excitation
Particles with Δr ≥ 0.3a are regarded as undergoing cage-breaking 
motion. Additionally, cage-breaking particles with their displacement 
vectors ri(t) − ri(0) pointing to their neighbouring particles at t = 0 are 
defined as string-like excitation. We can see this feature (Fig. 2e,f, red 
and orange arrows) for large-ratio T1 events.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

Code availability
The codes used in this study are available from the corresponding 
authors upon reasonable request.
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Extended Data Fig. 1 | Our 2D binary magnetic disk system under mechanical 
perturbation. a, A typical raw image of our sample. b, MSD of our pinning 
samples over τs at a high perturbation strength. Within τs, we can see a significant 
rise from the MSD plateau, which means that the system behaves as a viscous 
fluid. In this case, the long-time MSD becomes superdiffusive under our 
mechanical perturbation. With increasing the pinning fraction c, we can see 
that the system’s response gradually becomes solid-like. Thus, the mechanical 
perturbation strength should be small enough to guarantee a solid-like response 

within τs. c-e, Relaxation dynamics illustrated by the particle-level Van Hove 
correlation function at Δt = 20τs(c), Δt = 100τs (d), and Δt = 500τs (e). The self 
part of the particle-level time-dependent Van Hove correlation function, 
Gs,i(r, t), is calculated for a group of particles i that have a narrow range of 〈Δr2(t)〉 
(Δt = 500τs). The long-time motion of the fastest particles forms a second peak or 
a shoulder at a characteristic moving distance, whereas the motion of the slowest 
particles exhibits a Gaussian distribution.
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Extended Data Fig. 2 | Wall-induced effects on the relaxation dynamics in 
our systems. a, The particle number N counted with respect to the distance 
RC/a from the centre. The smooth circular wall induces the layering of particles 
up to a distance around 2a(a grey area) from the wall. b, c, Particles’ mean-
square displacements (MSD), 〈Δr2(t)〉/a2, with respect to RC/a at Δt = 10τs (b) 

and Δt = 200τs (c). The wall slows down the particle motion near the wall (a grey 
area). d, e, 〈Δr2(t)〉/a2 of bulk particles (d) and boundary particles (e). Although 
particles near the wall have slower dynamics than the bulk particles, we can 
observe the same threshold value of c*. It indicates that the wall does not change 
the glass transition point but makes the system less fragile, that is, stronger.

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-023-02016-4

Extended Data Fig. 3 | Characterization of internal-relaxation profiles.  
a-d, The unified ls,l − ΔR relation for T1 events. a, c ~ 0.012, b, c ~ 0.024, c, c ~ 0.036, 
d, c ~ 0.048. Here, ΔR is the total moving distance of the four particles in each 
tetragon. We can see a similar curve as in Fig. 2a-d. Note that each tetragon has 
four values of Nb(i). e-g, Cluster analysis of large-T1 and small-T1 events for all 
samples as a function of 〈Δr2(t = 200τs)〉/a2, where c* is located around 
〈Δr2(t)〉/a2 ~ 10−3. e, The number of T1-tetragon, NT1, in each sample. f, The average 

particle number, 〈NP〉, contained in the T1-cluster. g, The coordination number, 
nc , of T1-tetragon in the T1 cluster. Large-T1 cluster is string-like cooperative 
excitation at c ≤ c∗(⟨NP⟩ ∼ 10,nc ∼ 2), whereas small-T1 cluster is sparse, 
localized excitation at all c(⟨NP⟩ ∼ 4,nc ∼ 0). h, i, The number of T1-tetragon, N, 
excited with respect to t at c < c* (h) and c > c* (i). Large-T1 and small-T1 events are 
excited at different time scales, suggesting that small-T1 event contributes to 
slow-β relaxation.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Spatio-temporal illustration of internal-relaxation 
dynamics with increasing the pinning fraction. Relaxation dynamics is 
illustrated by ΔR(i) (indicated by the arrow length and direction), lsl (indicated 
by black and grey tetragons representing large-ratio and small-ratio T1 events, 
respectively), and Nb(i) (indicated by the particle and displacement colours). 
a, Sequential accumulation of large-ratio T1 events forms a compact cluster 
with Nb(i)≥1 for a typical sample of α-type relaxation (c ~ 1.2%). Note that the 

motion that forms the cluster’s core is also string-like. b, A collective excitation 
of spatially extended large-ratio T1 events forms a string-like cage-breaking 
excitation for a typical sample at c ~ 2.4%. c and d correspond to the cases of 
a glass state (c ~ 3.6% and c ~ 4.8% respectively), where large-ratio T1 events 
vanishes, but localized small-ratio T1 events can persist. The displacement fields 
in c and d are magnified 4 times. e, Sequential accumulation of large-T1 events 
that develop into a string-like larger cluster at a pinning fraction similar to a.
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Extended Data Fig. 5 | Spatio-temporal illustration of internal-relaxation 
dynamics in a supercooled colloidal liquid and a granular, crystalline system 
with dislocations. We use bidisperse Nipam colloidal particles to form a 2D 
glassy system. Relaxation dynamics is illustrated by Δr(i) (indicated by the arrow 
length and direction), lsl (indicated by black and grey tetragons representing 
large-ratio and small-ratio T1 events, respectively), and Nb(i) (indicated by the 
particle and the displacement colours). a-c, Reversible bond-breaking process 
occurring at the fast-β regime (t < τ0). d-f, Formation of string-like excitation 

after the fast-β regime. See the red and orange strings of Δr in f. g-i, Irreversible 
cage-breaking events serving as precursors of relaxation. See the recovery of Δr 
in g for the orange string in f. j, k, Spatial illustration of structure relaxations in a 
crystalline system with dislocations. We use large disk particles (10 mm diameter) 
in our magnetic glass system to form the 2D hexagonal crystalline structure with 
dislocations. Dislocation dynamics is responsible for large-ratio T1 events. We 
rarely find small-ratio T1 events, indicating the absence of the slow-β mode.
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Extended Data Fig. 6 | Comparison of the relaxation dynamics for two glass 
systems and crystals, using the four-particle tetragon model. a, A colloidal 
supercooled colloidal liquid system with short-range interactions that represents 
fast-β and α modes. We use bidisperse Nipam colloidal particles to form 2D glassy 
system. Note that the MSD plateau value is around 2.0 × 10−2. Small-ratio T1 events 
occur within τ0, whereas large-ratio T1 events typically occur around a time of 30 
τ0 (left panel). RM is absent for the relaxation dynamics examined at Δt = 0.2τ0 
(middle panel) and Δt = 100τ0 (right panel). b, The deeply supercooled granular 
liquid sample with long-range soft interaction that represents slow-β and α 
modes (c ~ 1.2%). Note that the MSD plateau value is around 2.0 × 10−4. Small-
ratio T1 events typically occur around a time of 2.0 × 104τ0, whereas large-ratio 

T1 events typically occur around a time of 1.0 × 105τ0 (left panel). We find a weak 
signature of RM at the time scale of slow-β relaxation (middle panel), whereas 
RM is absent at the timescale of early-α relaxation (right panel). c, The granular 
glass sample with long-range soft interaction that represents slow-β mode 
(c = 4.8%). Note that the MSD plateau value is around 4.0 × 10−4. Small-ratio T1 
events typically occur around a time of 2.0 × 105τ0, whereas large-ratio T1 events 
are absent (left panel). We find a strong signature of RM at the time scale shorter 
than (middle panel) and comparable (right panel) to the slow-β relaxation time. 
d, The crystalline system with dislocations. We use large disk particles (10 mm 
diameter) used in our glass system to form a 2D hexagonal crystalline structure 
with dislocations. Both RM and small-T1 events are absent.
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Extended Data Fig. 7 | Spontaneous fluctuations of ‘rigid’ bonds in glass 
samples. a, c ~ 3.6%, b, c ~ 4.8%. For a specific bond, we can define its rigidity 
through the time percentage that its dynamics belongs to the RM mode and not 

to the FM mode. The bonds with more than 7.5%, 10%, and 15% of their time in a 
‘rigid’ state are shown. We can see spontaneous fluctuations of ‘rigid’ bonds that 
present RM when approaching a glass state.
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Extended Data Fig. 8 | Probability distribution of tan−1(ΔLm,n/ΔLh,k) for the two 
glass and crystalline systems with dislocations. a, A strong signature of FM is 
observed, whereas RM is absent in the supercooled colloidal liquid with 
short-range interactions that represents fast-β (left panel) and α (right panel) 
modes. b, The deeply supercooled granular liquid sample with long-range soft 
interaction that represents slow-β and α modes (c ~ 1.2%). We find a weak 
signature of RM for slow-β relaxation (middle panel), whereas RM is absent for 

early-α relaxation (right panel). c, The granular glass sample with long-range soft 
interaction that represents slow-β mode (c ~ 1.2%). We find a strong signature of 
RM when early-α relaxation is absent. d, The granular, crystalline system with 
dislocations. Both RM and small-T1 events are absent. We find a strong signature 
of ΔLm,n/ΔLh,k ∼ √3, indicating the elastic nature. The results shown here 
correspond to those in Extended Data Fig. 6.
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