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Due to the breaking of time-reversal and parity symmetries and the presence of non-conservative 
microscopic interactions, active spinner fluids and solids respectively exhibit nondissipative odd viscosity 
and nonstorage odd elasticity, engendering phenomena unattainable in traditional passive or active 
systems. Here, we study the effects of odd viscosity and elasticity on phase behaviors of active spinner 
systems. We find the spinner fluid under a simple shear experiences an anisotropic gas–liquid phase 
separation driven by the odd-viscosity stress. This phase separation exhibits equilibrium-like behavior, with 
both binodal-like and spinodal curves and critical point. However, the formed dense liquid phase is unstable, 
since the odd elasticity instantly takes over the odd viscosity to condense the liquid into a solid-like phase. 
The unusual phase behavior essentially arises from the competition between thermal fluctuations and the 
odd response-induced effective attraction. Our results demonstrate that the cooperation of odd viscosity 
and elasticity can lead to exotic phase behavior, revealing their fundamental roles in phase transition.

Introduction

Classical fluid and elastic mechanics are based on certain sym-
metry and conservation laws, ensuring that linear response 
coefficients therein are symmetric. When the constraints are 
broken, antisymmetric response coefficients may emerge, such 
as odd viscosity and elasticity [1]. Odd viscosity represents 
the antisymmetric part of viscosity tensor, �o

ijkl
=−�o

klij
, which 

arises from the breaking of time-reversal symmetry [2–5]. The 
odd viscosity, also known as Hall viscosity, has been studied 
across many scales, including quantum Hall fluids [6], super-
fluids [7], polyatomic gases [8], magnetized plasmas [9], and 
chiral active fluids [10–13]. On the other hand, odd elastic-
ity refers to the antisymmetric elastic modulus, Ko

ijkl
=−Ko

klij
, 

which results from non-conservative microscopic interactions 
[14]. Such odd elastic solids can be constructed from active 
hinges and metamaterials [15,16], spinners [17,18], or muscle 
fibers [19].

Unlike traditional dissipative viscosity and storage elasticity, 
the odd viscosity is dissipationless and the odd elasticity is non-
stored [1]. The odd response coefficients have far-reaching 

consequences for the physical properties of materials and often 
engender unexpected phenomena. For instance, the odd viscos-
ity remarkably affects the velocity field of the fluid [20,21] and 
the forces/torques on embedded objects [12,22–25], induces 
the transverse mass transport [26,27] and topological sound 
waves at the fluid boundary [28], and markedly changes the 
Kelvin–Helmholtz and Saffman–Taylor instabilities of the fluid 
flows [29,30]. On the other hand, the odd elasticity fundamen-
tally alters the elastostatics and elastodynamics of the solids 
[14], even generates non-zero work over a quasistatic closed 
cycle deformation [14], induces topological edge modes [31], 
and causes self-kneading whorl structure in chiral crystals [18,32]. 
Despite the great progresses, the existing works focus on the 
existence of the odd viscosity and elasticity and their effects on 
the mechanics, transport, and dynamics of the materials. In 
particular, the odd viscosity and odd elasticity are investigated 
separately. However, the effect of the odd response coefficients 
on phase behavior is rarely explored, especially when both the 
odd viscosity and elasticity are essential.

Here, we perform particle-based simulations to study the 
phase behavior of a 2-dimensional (2D) fluid of repulsive 
active spinners in an external shear, concentrating on the role 
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of the odd viscosity and elasticity. The reason for considering 
the spinner system is that it exhibits the odd viscosity in the fluid 
phase [5,10,12,13] and the odd elasticity in the solid phase 
[17,18], hence serving as an ideal model. We find that the odd 
viscous stress triggers an equilibrium-like gas–liquid phase sepa-
ration in the direction perpendicular to the shear, while remain-
ing uniform along the shear. Further, once the dense liquid phase 
occurs, the odd elastic stress plays a role to condense the liquid 
into a solid-like phase, which is stable only when its width is 
within an activity-dependent range. All the findings can be 
quantitatively explained by continuum theories.

Results
The system consists of an ensemble of active spinners of radius 
a in a square box of size L = 100a, subjected to a simple shear 
�̇ (Fig. 1A). The translational and rotational degrees of freedom 
of the spinners evolve according to Langevin equations,

with m, I = ma2/2, γt, and γr = 4a2γt/3 separately being the mass, 
moment of inertia, and translational and rotational friction coef-
ficients. Here, Td is the driving torque, and Fex = �̇� t

(

y − L∕2
)

x̂ 
denotes the external force field, combined with the Lees–
Edwards boundary, to generate a uniform shear in the dissipa-
tive environment. The terms ζ and ξ are zero-mean Gaussian 
white noises of variance 〈ζ(t)ζ(t′)〉 = 2kBTγtδ(t − t′)1 and 
〈ξ(t)ξ(t′)〉 = 2kBTγrδ(t − t′), with the temperature T. Different 
spinners interact through the Weeks–Chandler–Andersen-type 
repulsion Fp with the characteristic energy ϵ, and at the same 
time, they couple tangentially via interparticle friction that is 
achieved by instantaneously updating vi and ωi according to the 
relative velocity at the impact point of 2 rough disks [33]. The 

units of length, energy, and mass are separately given by a, ϵ, 
and m, producing the unit of time t0 =

√

ma2∕ϵ and the unit 
of temperature ϵ/kB. In simulations, the frictional coefficients 
(� t = 100

√

mϵ∕a2) are sufficiently high to make inertia negli-
gible. More details are given in the Supplementary Materials.

Phase behavior of the sheared spinner fluid
To directly and thoroughly compare with equilibrium phase 
transitions, which are usually investigated in the T − ρ plane 
without shear and active torque, we fix �̇ and Td and change 
ρ and T. We take �̇t0 = 10−3 and Td/ϵ = 40 (counterclock-
wise), which not only lead to remarkable odd response but 
ensure the system in the linear response regime (see the 
Supplementary Materials).

Figure 1B displays the T − ρ phase diagram of the sheared 
spinner fluid. The fluid is either homogeneous or phase-separated, 
depending on T and ρ. The representative snapshots of different 
states are presented in Fig. 1C to E, manifesting that the phase 
separation only happens in the direction perpendicular to the 
shear. The phase-separated region can be divided into 2 differ-
ent domains, in which the homogeneous fluid is, respectively, 
unstable and metastable (see the Supplementary Materials). In 
the unstable regime, the homogeneous fluid spontaneously 
phase-separates, while the metastable fluid keeps its initialized 
(homogeneous or phase-separated) state in the simulation 
duration. Note that the transition density of the spinner fluid 
may be much less than that of the equilibrium 2D repulsive 
disks [34], which is about ρ = 0.74.

Following the concept of equilibrium gas–liquid phase tran-
sition, the borderline between the homogeneous and phase-
separated regions corresponds to the binodal-like curve, and 
the metastable and unstable domains are separated by the spi-
nodal curve. Moreover, in equilibrium, the coincidence of the 
spinodal and binodal curves implies a critical point, at which 
a system displays a singular behavior [35]. To see if there exists 
such a critical point in the out-of-equilibrium spinner system, 

(1)mv̇i = Fp + Fex + � − � tvi,

(2)I�̇i = Td + � − �r�i,

A B C

D

E

F

G

Fig. 1. (A) Schematic of interacting active spinners under simple shear (red arrows). (B) Phase diagram: colored solid symbols correspond to the simulation results, and the 
blue and green curves are, respectively, the spinodal and binodal-like curves obtained theoretically (see Fig. 2B). The solid and open stars refer to the critical point determined 
separately from the simulation measurement of compressibility and theory (Fig. 2B). (C to E) Representative snapshots of particle configurations at T = 0.14 (C), T = 0.08 
(D), and T = 0.01 (E), with ρ = 0.65. (F) Relative compressibility of the homogeneous spinner fluid as a function of 1/ρ for various T. The main diagram and inset display 
χ/χideal in the y and x directions, respectively. (G) The minimum packing fraction of the coexisting dilute phase vs. temperature.
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we quantify the relative compressibility of the spinner fluid 
by measuring the particle number fluctuations in a subregion 
of the system [36],  χ/χideal = (〈N2〉 − 〈N〉2)/  〈N〉 (see the Supple-
mentary Materials). As plotted in Fig. 1F, the compressibility 
perpendicular to the shear develops a peak when approaching 
the solid star in Fig. 1B, reminiscent of the equilibrium critical 
point. In contrast, χ/χideal is almost unchanged in the direction 
of the shear, reflecting the anisotropy of phase separation.

Besides its anisotropy, the structure of the final coexisting 
phases in these odd-response active spinners differs from that 
of the equilibrium gas–liquid system. Here, the dense phase is 
closer to a solid stripe with a hexagonal lattice structure than 
to a liquid, especially in a low-temperature regime. A moder-
ately wide stripe stably moves as a whole entrained by the shear 
flow, while a sufficiently wide stripe continuously fragments 
and reassembles, similar to the self-kneading crystal [18]. The 
coexisting dilute phase may even be “vacuum”. The solid-like 
stripe and the vacuum state possibly coexist only for the tem-
perature T ≲ 0.05, as Fig. 1G indicates that the minimum den-
sity of the coexisting dilute phase experiences a remarkable rise 
around T = 0.05. We emphasize that the phase separation 
of active spinners is fundamentally different from the shear-
induced aggregation or band of passive colloids and polymers. 
The latter usually originates from nonlinear effects of tradi-
tional (even) viscoelasticity [37] and takes place for both posi-
tive and negative shear. In contrast, the present case only occurs 
for negative shear with respect to the spinning direction and 
will be shown to arise from the linear odd viscosity and odd 
elasticity.

Despite the unusual phase behavior, the existence of the 
phase-separated region, metastable domain, and critical point 
suggests that the phase separation of the sheared spinners 
may share the same mechanism as equilibrium gas–liquid 
transition. Following the standard route to study the equilib-
rium gas–liquid transition by the equation of state of a uni-
form fluid, we will investigate the phase separation of the 
sheared spinner fluid by analyzing its normal stress.

Odd viscosity-driven anisotropic phase separation
According to the 2D continuum hydrodynamic theory of the 
spinner fluid [3,10–12], the stress �f

ij
 and the strain rate ∂ivj 

fulfill the constitutive relation,

with p being the pressure, ϵij being the Levi–Civita symbol, 
ω(r, t) being the angular velocity field, and Ω = ẑ ⋅ (∇ × v) 
being the vorticity of flow field. Here, the second and third 
terms are ordinary viscous stresses with the shear viscosity η 
and bulk viscosity ζ; the fourth term, with ηR being he rotational 
viscosity, refers to the antisymmetric stress that couples the 
spin and flow; the last one is the nondissipative stress from the 
odd viscosity ηo.

Under an external shear ∂yvx > 0 (Fig. 1A), Eq. 3 indicates 
that the odd viscosity contributes additional anisotropic normal 
stresses, which are separately �V ,o

xx = �o�yvx and �V ,o
yy = − �o�yvx 

along the x and y directions. As ηo is negative for Td > 0 [12], 
�V ,o
xx  and �V ,o

yy  amount to effective repulsion and attraction, 
respectively. It is the competition between the pressure and �V ,o

yy  
that drives the spinners to phase-separate in the y direction. 
For convenience, we regard −�fyy as the effective pressure,

Here, p and ηo can be determined for various ρ from indepen-
dent simulations with reverse-rotating spinners (clockwise), 
in which the spinner fluid is spatially homogeneous (see the 
Supplementary Materials). As shown in Fig. 2A, the magnitude 

(3)

�
f

ij
= −p�ij+�Vij

= −p�ij+�
(

�ivj+�jvi−�ij�kvk

)

+��ij�kvk

+�Rϵij(2�−Ω)+�o

(

�iϵjkvk+ϵik�kvj

)

,

(4)p
f

eff
= −�

f
yy = p + �o�yvx .

A B

Fig. 2. (A) Normal stress (in units of �0 = m∕ t2
0
) vs. ρ, with T = 0.05. (B) Effective pressure of the uniform spinner fluid (clockwise) exhibits a van der Waals-like equation of 

state. Here, the horizontal dashed lines denote the Maxwell constructions; the obtained binodal curve (green dashed–dotted line), spinodal curve (blue dashed–dotted line), 
and critical point (open star) are also plotted in Fig. 1B.
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of p and �V ,o
yy  increases with ρ, resulting in a non-monotonic 

dependence of pf
eff

 on ρ. Clearly, the uniform fluid is mechani-
cally unstable in the domain with the condition

where a minor density deviation from the mean ρ triggers the 
spinodal decomposition. The ρ dependence of pf

eff
 for varying 

temperatures is plotted in Fig. 2B, resembling the van der Waals 
equation of state. The relation �pf

eff
∕�� = 0 determines the spi-

nodal curves. At zero temperature, our previous numerical 
work shows that athermal rotors also form stripes under shear 
[13], which, however, is explained in terms of deterministic 
interparticle microscopic collision dynamics. Considering the 
odd viscosity and the non-monotonic effective pressure, it is 
now clear that the sheared athermal rotor system is mechani-
cally unstable. When either torque or shear is reversed, the 
spinner fluid will be homogeneous, since 𝜎V ,o

yy < 0 (effectively 
repulsive). Although 𝜎V ,o

xx > 0 (attractive) in this situation, the 
shear flow impedes the x-direction phase separation of the spin-
ner fluid.

To understand the existence of the metastable spinner fluid, 
we notice that chiral active fluids often exhibit equilibrium-like 
characteristics in their translational degrees of freedom. For 
example, spinner fluids are recently shown to display a Maxwell 
distribution of translational velocities, a Boltzmann distribu-
tion of particle concentration within an external potential, and 
to satisfy a fluctuation–dissipation relation for their viscous 
response [5]. In addition, a chiral active binary mixture can 
undergo an equilibrium-like transition similar to a thermal 
binary fluid [38]. Furthermore, Han et al. [5] demonstrated 
that the equilibrium-like behaviors of the chiral active fluids 
arise from the fact that the fluctuating (translational) and acti-
vated (rotational) degrees of freedom of the system are statisti-
cally decoupled (negligible mutual information), such that the 
fluctuating degrees of freedom behave equilibrium-like. These 
observations suggest that it is possible to use equilibrium ther-
modynamics to study the phase behavior of the nonequilib-
rium spinner fluid. Based on the above arguments, we utilize 
the Maxwell’s equal-area rule to construct the border for the 
phase separation (binodals) and to further identify the critical 
point (open star), as plotted in Fig. 2B.

For comparison, the predicted spinodal and binodal curves 
and critical point are drawn in Fig. 1B. Remarkably, the critical 
point and the low-density branches of the spinodal and binodal 
curves well match the phase diagram obtained from the direct 
simulations. Thus, the phase behavior of the spinners may be 
reasonably described in the framework of equilibrium gas–liq-
uid transition, when the odd viscous stress is considered. 
However, it should be noted that the final coexisting states in 
the direct simulations are solid-like phase and fluid instead of 
2 fluids with different densities, and that the dense spinner 
liquids are unstable. As a result, the high-density branches of 
spinodal and binodal curves are lacking (Fig. 1B), unlike the 
above theoretical prediction (Fig. 2B). The differences imply 
that the fluid theory is invalid in the dense regime, in which 
the elasticity could take effect.

Odd elasticity-reshaped coexisting phases
To understand the abnormal coexisting states of the phase-
separated spinners, we account for the elastic effect, which 
becomes considerable at high densities [14,18,39]. Since the 
2D solid composed of active spinners is an innate odd elastic 
material [17,18], its stress is of the form,

with the local displacement field u(r, t) that is related to the 
local velocity field v(r, t) in Eq. 3 by v = ∂tu. Here, the spin-
induced asymmetric stress 2ηRωϵij still exists [14,18]. In the 
elastic stress part �E

ij
, λ and μ are, respectively, the bulk and 

shear elastic moduli, and Ko refers to the odd elastic modulus. 
To see the odd elastic effect, we consider a periodic hexagonal 
crystal of spinners under a shear strain ∂yux. In this case, the 
odd elasticity produces anisotropic normal stresses that are 
�E,oxx = Ko�yux and �E,oyy = −Ko�yux. Similarly, we define an 
effective pressure in the y direction for the spinner solid,

Figure 3A, obtained from simulation, shows that before plastic 
deformation, the odd elastic term linearly increases with the 
strain, having a negative slope Ko, while p remains constant. 
Similar to the role of ηo in the spinner fluid, the odd elastic 
stress 𝜎E,oyy > 0 produces effective attractions along the y direc-
tion in the spinner solid.

Based on the above observation, once the (otherwise stable) 
coexisting dense liquid emerges from the sheared spinners, �E,oyy  

exerts an extra attraction that breaks the balance between �V ,o
yy  

and pressure, condensing the dense liquid into the solid stripe 
and markedly reshaping the coexisting phases. Here, the forma-
tion of the odd elastic solid results from the odd elasticity itself, 
in contrast to the cases of magnetic colloidal rotors [18] and 
starfish embryos [17], where additional magnetic or hydrody-
namic attraction is needed.

We now use the elastic theory to quantitatively study the 
properties of the final coexisting states. For simplicity, we first 
consider the solid-vacuum coexisting state, where ps

eff
 vanishes 

everywhere. In the shear flow, the solid stripe moves as a whole 
at a constant velocity v0 along the x axis and suffers from a 
nonuniform shear strain. v0 is determined by balancing the 
external driving and environmental friction on the stripe, 
1

Vp
∫ y0+ws
y0−ws

[

f
(

y
�
)

− � tv0

]

�
(

y
�
)

dy
�
= 0, with y0 and ws sepa-

rately being the center and half-width of the stripe, Vp = πa2, 
and f

(

y
)

= �̇� t
(

y − L∕2
)

 being the external force field. The lin-
ear y dependence of f(y) thus means that v0 is just the local velocity 
of the shear flow at the stripe center, namely, γtv0 = f(y0). Further, 
the steady-state force balance on an element of the stripe in the 
x-direction is 0 = �y�

s
xy

(

y
)

+
[

f
(

y
�
)

− f
(

y0
)

]

�
(

y
�
)

∕Vp. By 

integration with �sxy
(

y0 + ws

)

= 0 (at the stripe upper edge), 
the local tangential stress reads

(5)
𝜕p

f

eff

𝜕𝜌
< 0,

(6)

�sij= −p�ij+2�R�ϵij+�Eij

= −p�ij+2�R�ϵij+�
(

�iuj+�jui−�ij�kuk

)

+��ij�kuk+Ko

(

�kϵikuj+�iϵjkuk

)

,

(7)ps
eff

= p − �E,oyy = p + Ko�yux .
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indicating that �sxy
(

y
)

 monotonically increases from zero at the 
stripe edge to a maximum at the stripe center. Moreover, for 
any given y inside the stripe, �sxy

(

y
)

 increases with ws, since 
∣f(y) − f(y0)∣ can take a larger value for a wider stripe. Approximat-
ing ρ(y) as a constant value 0.8 (close to the mean ρ of the stripe 
[Fig. 3B]), Eq. 8 reproduces the tangential stress obtained from 
the direct simulation (Fig. 3C).

Actually, the local density of the stripe is position-dependent. 
By spontaneous relaxation of ρ(y), the effective pressure (Eq. 7) 
reaches zero throughout the stripe,

where �sxy
(

y
)

= 2�R� + ��yux is used. The combination of 
Eqs. 8 and 9 determines the density distribution of the stripe. 

It is highly nontrivial to solve the equations, since all the elastic 
moduli and pressure depend on ρ. Thus, we perform indepen-
dent simulations to tentatively seek the solution, in which 
we shear a uniform periodic spinner crystal and tune its den-

sity until ps
eff

(

�; �sxy

)

= 0 for various �sxy, as shown in Fig. 3D. 

The obtained ρ is a function of �sxy, which, together with the 
y–�sxy

(

y
)

 relation in Fig. 3C, gives the density distribution of 
the stripe, agreeing with the direct simulation measurement in 
the phase-separated system (Fig. 3B).

Nevertheless, the solution of Eq. 9 does not exist for very 
small or large �sxy within the elastic limit of the spinner crystal, 
as displayed in Fig. 3D. Because �sxy

(

y
)

 increases monotonically 
with the stripe width (Eq. 8), the solvability condition with 
respect to �sxy gives the width range of the solid stripe that can 
stably coexist with the vacuum (see the Supplementary Materials). 
The predicted width range of the stable stripe nicely agrees with 
the direct simulation measurement (Fig. 4A). Intuitively, for 

(8)�sxy
(

y
)

=
1

Vp ∫
y0+ws

y

[

f
(

y
�
)

− f
(

y0
)

]

�
(

y
�
)

dy
�
,

(9)ps
eff

(

y
)

= p
(

y
)

+ Ko

�sxy
(

y
)

− 2�R�

�
= 0,

A D

B C

Fig. 3. (A) Normal stress–strain relation of the spinner crystal at T = 0.01 and ρ = 0.75, yielding Ko =  − 6.65 by fitting. (B) Packing fraction and (C) tangential stress distributions 
of the emerging stripes at T = 0.01 and ρ = 0.65, where the blue data refer to the simulation and the red lines refer to the theoretical predictions from Eqs. 8 and 9. 

(D) Effective pressure of the spinner crystal vs. ρ for various �s
xy

 (colored solid lines), where ps
eff

(

�; �s
xy

)

= 0 determines the ρ distribution in the stripe [red dashed 

line in (B)]. Here, the upper and lower dotted lines, respectively, correspond to the zero and maximum (elastic limit) shear deformations, and the open triangles mark the 

region in which ps
eff

(

�; �s
xy

)

= 0 is solvable.
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very narrow stripes (small �sxy), the odd elasticity effect is too 
weak to stabilize the stripe (Fig. 4B), while for very wide stripes, 
�sxy at the stripe center is strong enough to destroy the solid 
structure (Fig. 4C). Furthermore, the current discussion shows 
that the minimum width is wider than the maximum one when 
T > 0.05 (Fig. 4D), meaning the stripe-vacuum coexisting state 
is unstable. In this case, the dilute coexisting phase is a fluid, 
consistent with the direct simulation (Fig. 1B and G).

Conclusion
Using simulations and continuum theories, we study the phase 
behavior of sheared active spinner systems. We demonstrate 
that the odd viscosity initially drives an anisotropic equilib-
rium-like gas–liquid phase separation and the odd elasticity 
dramatically reshapes the final coexisting phases, thus revealing 
the important role of the odd responses in phase transition of 
chiral active matter. Interestingly, the onset of the phase separa-
tion of the active spinner fluid can be reasonably described in 
the framework of equilibrium phase transition, probably arising 
from the statistical decoupling between the fluctuating and 

activated degrees of freedom. Our findings could be verified 
with synthetic active rotors [10,11,40–43] or biological spinners 
[17,44,45]. Self-organization is prevalent in both linear [46–49] 
and chiral [17,50,51] active matter, playing a vital role in their 
functionality. Our work elucidates the mechanism underlying 
the self-organization of chiral active matter under shear, and 
thus provides insight for exploiting their potential applications 
in biomedicine and materials science.
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Fig.  4.  (A) Comparison of the maximum and minimum widths of the stable solid stripe obtained from the simulation and theory, for various Td at T  = 0.01. (B) and (C) represent 
simulation snapshots from initial solid stripe configurations (insets) of different widths, at T = 0.02 and Td/ϵ = 40. (D) The predicted maximum and minimum widths of the 
stable solid stripe as a function of temperature, with Td/ϵ = 40.
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Data Availability
All data needed in the paper are present in the paper and in 
Supplementary Materials. Additional data related to this paper 
may be requested from the authors.

Supplementary Materials
Figs. S1 to S5 
Movies S1 to S3
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