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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Brownian squares exhibit sub-diffusive 
behavior on spherical surfaces.

• Translational dynamics weaken with 
increasing surface curvature.

• Rotational diffusion remains constant 
regardless of curvature changes.

• Smoluchowski equation matches exper
imental trends, highlighting geometric 
effect.

• A new way to quantitatively assess 
MSAD on spherical surfaces.
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A B S T R A C T

Hypothesis: The diffusion of colloidal particles on curved surfaces is crucial for understanding mass transport in a 
wide range of biological and physical systems. To date, most experimental studies on colloid diffusion on curved 
surfaces have focused on the behavior of isotropic colloids diffusing on soft oil-water interfaces. However, there 
has been no experimental work reported on how anisotropic colloids diffuse on hard spherical surfaces.
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Single-particle dynamics
Smoluchowski equations Experiments: Herein, we report a first experimental study of the single-particle dynamics of micro-sized Brownian 

square platelets on solid spherical surfaces with four different curvatures. Utilizing video microscopy and 
particle-tracking techniques, we investigated both the translational and rotational motion of the square platelets. 
An analytical model based on Smoluchowski equations was developed to explain the observed diffusion 
behaviors.
Findings: The translational motion of the square platelets was found to be sub-diffusive at time scales comparable 
to their relaxation time, with the power-law exponent of the mean square displacement (MSD) decreasing as the 
curvature increased. In contrast, the rotational diffusion of the platelets exhibited minimal variation with 
changes in curvature. The developed analytical model based on Smoluchowski equations could explain the 
observations in both translational and rotational diffusion, highlighting the crucial role of surface geometry in 
determining the diffusion dynamics. This research provides new insights into the diffusion of anisotropic par
ticles on hard spherical curved surfaces, which will pave the way for understanding mass transport problems on 
curved surfaces in various fields.

1. Introduction

The diffusion of colloids is a common phenomenon which is closely 
linked to life and many industrial processes [1–3]. Diffusion processes in 
cases of bulk 3-dimensional systems, near a 2-dimensional smooth plane 
or between two parallel planes have been widely studied and well un
derstood [4–7]. In contrast, diffusion on curved surfaces remains rela
tively less explored. As colloidal diffusion on curved surfaces is related 
to many important mass transport processes [8–15] such as the diffusion 
of proteins inside cell membranes, or cell migrate on curved substrate 
[16] or under tubular confinement [17], a better understanding of how 
colloids diffuse on a curved surface will be of great importance. A pri
mary model of curved surfaces used in previous studies is oil-water in
terfaces [18–20]. For example, Zhong et al. measured the trajectories of 
nano-sized polystyrene particles diffusing on highly curved water‑sili
cone oil interface, and found that the diffusion of colloids slowed down 
as the curvature of oil droplet increased [18]. To date, the majority of 
studies on colloidal diffusion on curved surfaces have focused on soft oil- 
water interfaces, with relatively little attention given to diffusion on 
solid curved surfaces. However, diffusion on solid surfaces is equally 
important. The laws derived from soft interfaces cannot be directly 
applied to hard surfaces, as factors such as droplet deformation [18], oil 
viscosity [19,21,22], and recirculation effects [21], which influence 
diffusion on liquid-liquid interfaces, are absent on liquid-solid in
terfaces. Therefore, it is essential to investigate colloid diffusion on hard 
curved surfaces.

Anisotropic particles are widely distributed in nature, and have been 
applied in a large range of fields [23–25]. Understanding their diffusion 
processes especially their diffusion on curved surfaces is helpful to settle 
some important mass transport problems, such as the transport, accu
mulation, and bio-distribution of anisotropic drugs at the vascular level 
[26]. Compared to isotropic colloids, the dynamics of anisotropic ones is 
more complex due to the discernable rotational motion resulted from 
rotational symmetry breaking in their shapes [27–31]. Our previous 
experimental work discovered the effect of hard cylindrical curvature 
together with depletion attractions on translational and rotational mo
tion of colloidal square platelets [32]. However, for how anisotropic 
colloids diffuse on another type of simple curved surface with nonzero 
Gaussian curvature - spherical surface, to the best of our knowledge, 
there is no experimental study reported yet. Herein, using video particle 
tracking techniques, we experimentally investigated the single-particle 
dynamics of Brownian square platelets on inner spherical surfaces 
with different curvatures in the presence of depletion agents, which was 
used to keep the square close to the substrate spherical surface with the 
normal direction of square’s flat surfaces being parallel to the radial 
direction through depletion attractions between the square and the 
substrate spherical surface. Both translational and rotational diffusions 
of square platelets were investigated. By varying the radius of spherical 
surfaces, the effects of curvature on square diffusion were studied. An 
analytic model based on Smoluchowski equations have been developed 

and compared with our experimental measurements. The findings of this 
study highlight the significant role that substrate surface geometry plays 
in shaping the dynamics of anisotropic colloids, which may provide 
valuable insights and solutions for addressing a wide range of mass 
transport challenges.

2. Experimental part

2.1. Preparation of a sample cell containing spherical substrate surfaces

The process to fabricate a Polydimethylsiloxane (PDMS)-based 
sample cell containing spherical substrate surfaces is illustrated in 
Fig. 1a. First, cylindrical posts with different radii (between 5 μm and 25 
μm) and the same height of 10 μm were deposited on a silicon wafer with 
positive photoresist EPG 590 (Everlight Chemical), as detailed in the 
Protocol in Supporting Information and Table S1 and Fig. S1. Then, the 
wafer was placed onto a hot plate (180 ◦C ~ 200 ◦C) for 3 min ~ 5 min to 
melt the cylindrical posts. After the wafer was cooled down to room 
temperature, spherical caps with different curvatures on the wafer were 
obtained, and the curvature of these caps were measured using the 
scanning electron microscope (SEM) images showing the side view of 
these caps (see one example in Fig. 1c). Next, we placed the wafer on the 
bottom of a small petri dish with the patterned side facing upwards, 
poured liquid PDMS (Dow Corning Sylgard 184 silicone elastomer kit, 
the ratio of pre-polymer to cross-linking agent is 10:1) into the petri 
dish, and let it cured in an oven at 80 ◦C for 20 min. After that, the 
crosslinked PDMS was peeled off, and bonded to a glass slide by oxygen 
plasma treatment for 45 s at 136 w. Then, a sample cell containing many 
spherical substrate surfaces was obtained. To observe the diffusion of 
colloids on spherical substrate surfaces, a volume of colloidal suspension 
was injected into the sample cell.

2.2. Colloidal suspensions

Square platelets with average edge length L = 2.3 ± 0.1 μm and 
thickness of 1.2 ± 0.1 μm (a typical SEM image is shown in Fig. 1d) were 
made from SU-8 polymers (KAYAKU Advanced Materials) using 
photolithography in the same way as in our previous work [33]. To keep 
the square diffuses in close proximity to the inner spherical surface with 
the normal direction of square’s flat surfaces being parallel to the radial 
direction, polystyrene particles with a diameter of 40 nm (by Thermo 
Fisher Scientific, Sulfate latex, 8 % w/v) was added into the system as 
depletion agents (the final concentration is 4 % w/v).

2.3. Sample preparation for the control experiment - colloids diffusing on 
a planar surface

First, the rectangular glass tube (VitroCom, 0.1 mm × 2 mm) was 
affixed to a glass slide using photosensitive adhesive (Norland NOA81). 
Subsequently, colloidal suspensions were introduced into the tube. 
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Finally, the tube was sealed with the same photosensitive adhesive 
(Norland NOA81).

2.4. Data collection and image analysis

Samples were observed with an inverted optical microscope (Leica 
DMi8) using a long working distance 63× objective (numerical aperture 
NA = 0.7). 10,000 images were taken by a sCMOS camera (ANDOR) at 
~10 frames per second for each sample, which were then processed to 
extract centers and vertexes of squares for further analysis using user- 
written Interactive Data Language routines. As each taken image is in 
fact a projection of the observed object on a 2D flat plane, a coordinate 
transformation was performed to convert the extracted 2D coordinates 
of centers and vertexes of squares in each image back to the corre
sponding coordinates of squares on spherical surfaces in 3D space (see 
details in Supporting Information and Fig. S2-S3).

3. Results

We first studied the translational diffusion of squares on spherical 
substrate surfaces. The translational mean square displacement (MSD) is 

calculated as 
〈
̂Δ r→

2
(Δt)

〉
=

〈
|

̂ri
→
(t1) − ri

→
(t0) |

2
〉

, where ri
→
(t1) is the 

position vector of particle i (located on the curved surface) at time t1, 
ri
→
(t0) is the position vector of particle i at time t0, Δt is time interval, 

and ∣ ̂ri
→
(t1) − ri

→
(t0)∣=ιR, represents the corresponding arc length of 

ri
→
(t1) − ri

→
(t0) on the spherical surface, where ι is the central angle of the 

sphere between the center positions of the square at time t0 and time t1, 
R is the radius of the spherical surface, and <⋅⋅⋅> denotes ensemble 
average. As is shown in Fig. 2a, the MSD on the planar surface (curvature 
K = 0) is the largest among the tested conditions, and MSDs are reduced 
with K increases, indicating that the diffusion of squares on spherical 
surfaces will be more confined when K increases. Quantitatively, the 

Fig. 1. (a) Fabrication of the sample cell with negative curved spherical caps on surface. (b) Schematic illustration to show the overlapped excluded volume between 
a square and the curved surface. (c) Scanning electron microscope image of a spherical cap on silicon wafer. Scale bar is 5 μm. (d) Scanning electron microscope 
image of a square platelet. Scale bar is 1 μm.
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exponent αT of the relationship MSD ∝ (Δt)αT was calculated from a 
power law fitting of the data between 0.6 s and 20 s. Fig. 2b shows that 
αT decreases from 0.99 ± 0.12 to 0.83 ± 0.09 as the curvature K changes 
from 0 to 0.11 μm− 1, suggesting that the translational diffusion of 
squares changes from a Brownian-type (αT ~ 1) to a sub-diffusive motion 
(αT < 1). Numerous theories and simulations [34–37] indicate that the 
particles on a curved surface would exhibit a normal diffusion at small 
but larger than the inertial time scale. Then, the expression αΔt

T (Δt) =
∂logΔr2(Δt)

∂logΔt is employed to examine whether the MSD versus time interval 
curves shows a linear scaling at small time scales. As illustrated in 
Fig. 2c, even at very small time scales, the particles in our experiment 
still exhibit sub-diffusive behavior on the curved surface. For instance, at 
Δt is ~ 9 s, the exponent αΔt

T (Δt = 9s) decreases from 0.99 ± 0.12 on the 

planar surface to 0.90 ± 0.08, 0.90 ± 0.09, 0.87 ± 0.11, and 0.84 ±
0.14 on the curved surfaces with increasing curvature. For particles 
moving on the surface with the maximum spherical curvature (K =
0.11), the exponent continues to decrease as the time scale extends 
beyond 9 s. We would like to delve into this sub-diffusive behavior in 
conjunction with theoretical analysis in the following sections.

We then investigated the rotational diffusion of squares on spherical 
surfaces. For square diffusion on a planar surface, the angular 
displacement could be easily obtained by subtractions of square orien
tations. However, such simple calculation is not appropriate for diffu
sion on spherical surfaces, as the rotation of a square is referred to the 
axis that is perpendicular to the square flat surfaces and the orientation 
of this axis is changing when the square diffuses on spherical surfaces. 
To calculate the angular displacement of a square on a spherical surface, 

Fig. 2. (a) Mean square displacement (MSD) of a square on the inner surface of spherical caps with different curvature K. Red diamond: K = 0.11 μm− 1; blue dot: K 
= 0.06 μm− 1; yellow up triangle: K = 0.04 μm− 1; green square: K = 0.03 μm− 1; purple down triangle: planar surface. The black solid line corresponds to the slope 
equal to 1. (b) Translational diffusion index αT of squares as a function of K. (c) Translational diffusion index αΔt

T (Δt) of squares as a function of time interval Δt. Error 
bars represent the standard deviations of the corresponding data from 13 to 14 samples. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)

Fig. 3. (a) Schematic diagram showing the calculation of the angular displacement during a time interval t1- t0. (b) The mean square angular displacement (MSAD) of 
a square on the inner surface of spherical caps with different curvature. Red diamond: K = 0.11 μm− 1; blue dot: K = 0.06 μm− 1; yellow up triangle: K = 0.04 μm− 1; 
green square: K = 0.03 μm− 1; purple down triangle: planar surface. The black solid line corresponds to the slope equal to 1. (c) Rotational diffusion index αθ and (d) 
rotational diffusion coefficient Dθ of squares as a function of K. Dθ is derived through a linear fit of the MSAD versus Δt curve, in conjunction with the relationship 
MSAD = 2DθΔt. Error bars represent the standard deviations of the corresponding data from 13 to 14 samples. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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we performed the following. Considering a square, at time t0, its center is 
located at S0 and has an orientational vector δ0

→ pointing from S0 to one 
of its corners, while at time t1, it moves to S1 and δ0

→becomes δ1
→ (pointing 

from S1 to the same corner as in δ0
→) (Fig. 3). The plane of OS0S1 and the 

square flat surface will have an intersecting line, which is denoted as β0
̅→

for t0, and β1
̅→ for t1. We define the angle between δ0

→ and β0
̅→ as θ0, and 

similarly the angle between δ1
→ and β1

̅→ as θ1, then the angular 
displacement for the square diffusion on the spherical surface during the 
time interval Δt = t1 - t0, can be calculated as Δθi(Δt) = θ1 - θ0, as 
illustrated in Fig. 3a. The Δθi(Δt) is clearly different from the angle 
between δ0

→ and δ1
→, which would the angle displacement if the square 

diffuses on a planar surface. For example, if the square moves from S0 to 
S1 without rotation around the square axis that is perpendicular to the 
square flat surface, for simplicity, we can also let δ0

→ be parallel to β0
̅→, 

then θ0 = 0 and θ1 = 0, So Δθi(Δt) = 0. However, δ1
→ - δ0

→ is none zero (as 
δ0
→ points upward whereas δ1

→ points downward (Fig. S4). Using the 
aforementioned method, the mean square angular displacement (MSAD) 

was calculated as 
〈
Δθ2(Δt)

〉
=

〈
(Δθi(Δt) )2

〉
, where <⋅⋅⋅> denotes 

ensemble average. The results are shown in Fig. 3b. Compared with 
MSD, there seems no conclusive trend in MSAD when K increases. By 
fitting the MSADs using a power law function MSAD ∝ (Δt)αθ , the 
exponent αθ of each MSAD curve on spherical surfaces was obtained. For 
the tested range of K, αθ fluctuates between 0.91 ± 0.07 and 0.87 ± 0.09 
(Fig. 3c), which is also close to the αθ of the planar surface (0.92 ± 0.07), 
suggesting that the rotational diffusion of squares is not affected by the 
substrate surface curvature and is essentially a Brownian-type motion. 
The slight deviation of the averaged αθ from 1 is likely due to the non- 
perfect conditions of fabricated spherical surfaces and colloids such as 
the roughness of substrate surfaces and square platelets. Correspond
ingly, the rotational diffusion coefficient Dθ measured based on MSAD 
curves also remains roughly constant when K changes (Fig. 3d).

To further understand the experimental observations, we first 
checked the role of depletion attractions in the diffusion behavior of 
squares. As the depletion agents were added into the system to keep 
squares diffusing close to the substrate surfaces, there is a face-to-face 
depletion attraction between a square and the substrate surface, which 
can be calculated to the first order by 

Uff = − Ve ×Π (1) 

where Ve is the overlapped excluded volume, Π is the osmotic pressure 
of depletion agents. Using an ideal gas approximation, Π is obtained by 
Π = nskBT, where ns is the number density of depletion agents and is 
calculated by ns = φs /(πds

3/6), with φs and ds being the volume fraction 
and diameter of the spherical depletion agents, respectively. In this 
study, Π (or φs and ds) keeps constant, so Uff mainly changes with Ve, as 
Ve will change with the substrate surface curvature. For practical pur
poses, the calculation of Ve can be decomposed into three parts: The 
overlapped region between the excluded volume of the square and the 
excluded volume of the substrate (overlapped excluded volume I in 
Fig. 1b); The overlapped region between the square itself and the 
excluded volume of the substrate (overlapped excluded volume II in 
Fig. 1b); The overlapped region between the excluded volume of the 
square and the substrate itself (overlapped excluded volume III in 
Fig. 1b). These three parts can be numerically measured by constructing 
a 3D model where a square platelet falls to the bottom and sits stably on 
the spherical surface of a substrate with the normal axis of square flat 
surface along the radial direction of the spherical surface (illustrated in 
Fig. 1b), using SolidWorks software (see details in Supporting Infor
mation, Fig. S5 and Table S2). Thus, Ve and corresponding Uff can be 
obtained for different spherical surfaces as substrates. The results are 
shown in Fig. 4., where Uff was normalized by the magnitude of Uplane

ff for 
the case of planar substrate surface. We can see that the magnitude of 

depletion attraction energy decreases as the curvature increases. From 
the lubrication theory [38,39], the drag coefficient of particles will 
decrease when they are further to the boundary surface (i.e., less 
affected by the boundary surface). Then, when the depletion attraction 
decreases as K increases, the square will be away from the substrate 
surface, and thus experience less drag imposed by the substrate surface, 
which should result in an enhancement in both translational and rota
tional dynamics as K increases. However, this contradicts to the exper
imental observations in Fig. 2c that translational diffusion declined on 
highly curved surfaces, suggesting that the depletion attraction is not the 
primary cause for the observed diffusion behavior on spherical surfaces. 
It is worth noting that in our experiment, the calculated depletion 
attraction between the square particles and the curved surfaces based on 
Ve ranges from 6.0 kBT to 110.6 kBT. Moreover, our microscopy videos 
show no significant detachment of the vertices of the squares from the 
surface. Thus, we conclude that the depletion attraction is sufficiently 
strong to enable the particles to diffuse along a spherical surface 
concentric with the substrate. This further supports the validity of our 
analytical methods for calculating the MSD and MSAD.

Once the particles diffuse away from the central valley position, 
gravity begins to influence their dynamics. Specifically, the larger the 
curvature of the spherical surface, the greater the tangential component 
of the gravitational force acting on the particles as they move along the 
surface of the sphere over the same distance. This enhanced tangential 
gravitational force exerts a stronger inhibitory effect on the translational 
motion of the particles. Consequently, in our experiments, gravity con
tributes to the observed decline in the exponent αΔt

T (Δt) at short time 
scales for particles on the surface with the maximum curvature (K =
0.11 μm− 1). At long time scales, gravity can restrict the translational 
motion of particles on spherical curved surfaces. To investigate the 
impact of gravity on particle dynamics, we calculated the gravitational 
height (hg) of the square particles (defined by ΔρVghg = kBT) and its 
corresponding arc length r̂g for each spherical curved surface (see details 
in Supporting Information). Here, r̂g represents the position along the 
surface, away from the central valley position, that is reached due to the 
thermal energy overcoming the particle’s gravitational potential. To 
estimate the time scale tg at which gravity starts to significantly suppress 
translational motion, we calculate tg using the formula tg = r̂g

2
/Dplane

T , 
where Dplane

T is the diffusion coefficient of the square platelets diffusing 
on a planar surface, as obtained from experimental measurements. The 

Fig. 4. The calculated face to face depletion attraction energy (Uff) of a square 
on spherical surfaces normalized by the absolute depletion attraction energies 
on a flat surface (∣Uplane

ff ∣), as a function of the curvature in the presence of 4 % 
(w/v) PS spheres with a diameter of 40 nm.
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results are summarized in Table 1. As shown in Table 1, all values of tg 

exceed 100 s. This indicates that within our experimental time window 
of 100 s, gravity does not significantly restrict the translational motion 
of the particles, and thus does not lead to an MSD plateau.

Then, we turned to develop an analytical model for colloidal diffu
sion on spherical surfaces based on Smoluchowski equation. Following 
the work of Manca et al. [40], the Smoluchowski equation describing the 
motion of a Brownian particle on a surface S can be expressed as 

∂P
∂t

=
kBT

ζ
ΔgP (2) 

Here, P is the probability density of the particle configuration, kB is the 
Boltzmann constant, T is the temperature, ζ is the friction coefficient per 
unit mass, kBT

ζ is the product of translational diffusion coefficient and 

mass, and g =
[
gij

]
represents the kinetic energy metric tensor, defined 

byEk = 1
2gij

dqi

dt
dqj

dt , where Ek is the kinetic energy and (qi) is a set of 
generalized coordinates of the configuration space. The kinetic metric 
tensor g encodes the surface’s geometric shape, thus incorporating 
geometric effects into the diffusion equation through the associated 
Laplacian operator Δg.

The kinetic energy of a thin small square platelet of mass m moving 
on a sphere of radius R is (derivation is given in Appendix A) 

Ek =
1
2

ϕ̇
2[sin2ϑ

(
I1 + mR2)+ cos2ϑI3

]
+

1
2

ϑ̇
2( I1 + mR2)+

1
2

γ̇2I3

+ ϕ̇ γ̇cosϑI3 (3) 

in which ϕ, ϑ denote the azimuth angle and the elevation angle of the 
center of mass of the platelet, respectively, and γ denotes the self- 
rotation angle of the platelet. I1 represents the moment of inertia 
about the principal axes passing through the center of mass and parallel 
to one side of the square platelet, and I3 denotes the moment of inertia 
about the axis passing through the center of mass and perpendicular to 
the plane of the square platelet. Hence the kinetic metric tensor in the 
coordinates (ϕ,ϑ,γ) is 

[
gij

]
=

⎡

⎣
sin2ϑ

(
I1 + mR2)+ cos2ϑI3 0 I3cosϑ

0 mR2 + I1 0
I3cosϑ 0 I3

⎤

⎦ (4) 

The associated Laplacian operator is 

Δg =
1

(
I1 + mR2

)
sin2ϑ

∂2

∂ϕ2 +
1

I1 + mR2
∂2

∂ϑ2 +
cotϑ

I1 + mR2
∂

∂ϑ

− 2
cosϑ

(
I1 + mR2

)
sin2ϑ

∂2

∂ϕ∂ϑ
+

(
I1 + mR2

)
sin2ϑ + I3cos2ϑ

I3
(
I1 + mR2

)
sin2ϑ

∂2

∂γ2 (5) 

It can be shown that the solution of the Smoluchowski eq. (2) admits 
a small-time expansion [41]: 

〈f(t) 〉x0=y =
∑∞

k=0

tk

k!

〈(
D Δg

)kf
〉

x0=y
=

∑∞

k=0

tk

k!
D

kΔk
g f(y) (6) 

Here, 〈f(t) 〉x0=y represents the ensemble average of a function f 
depending on the position x of the system at time t, with the system 
starting from an initial position x0 = y, D = kBT

ζ , and Δg is the Laplacian 
operator.

For the square plate system considered in this study, the quantities of 

interest are the MSD (
〈
̂Δ r→

2
(Δt)

〉
), the MSAD (

〈
Δθ2(Δt)

〉
), and a direct 

calculation (details given in Appendix B) shows that the dependence of 
the MSD and MSAD on the curvature radius R of the spherical surface is 

〈
̂Δ r→

2
(Δt)

〉
≈ 4

kBTR2

ζ
(
I1 + mR2

)Δt −
4
3

(kBT)2R2

ζ2( I1 + mR2
)2(Δt)2

+ o
(
(Δt)2) (7) 

〈
Δθ2(Δt)

〉
≈ 2

kBT
ζI3

Δt +
(kBT)2

ζ2( I1 + mR2
)2(Δt)2

+ o
(
(Δt)2) (8) 

In particular, the power series expansions presented in eqs. (7) and 
(8) can be regarded as specific instances of the mean-square geodesic 
displacement expansion formula given in literature [42], which is 

expressed as ’
〈
[δs(t) ]2

〉
≈ 4Dt −

∑
n=2Gn[KG(x0) ](Dt)n’.

For the MSD Eq. (7), the coefficient of the linear term is 4 kBTR2

ζ(I1+mR2)
~ 

4.2 × 10− 13 m2/s, while the one for the quadratic term, − 4
3

(kBT)2R2

ζ2(I1+mR2)
2 , 

ranges from − 3.1 × 10− 16 to − 1.1 × 10− 17 m2/s2 in our experiments, 
which is approximately three orders of magnitude smaller than that of 
the linear term. By contrast, for the MSAD Eq. (8), the coefficient of the 

quadratic term, (kBT)2

ζ2(I1+mR2)
2, ranges from 5.8 × 10− 9 to 4.9 × 10− 6 rad2/s2, 

which is at least five orders of magnitude smaller than the linear coef
ficient 2 kBT

ζI3 
= 0.24 rad2/s. Given that the experimental time scale can 

reach the order of 100 s, for MSD Eq. (7), the quadratic term is 
considerable, while for MSAD Eq. (8), the quadratic term is negligible. It 
is worth noting that the experimental time scale is comparable to the 
translational relaxation timescale (estimated with L2/Dplane

T ~ 140.8 s), 
but is significantly shorter by an order of magnitude compared to the 
rotational relaxation timescale (estimated by (2π)2

/Dplane
θ ~ 44.5 min, 

where Dplane
θ is the rotational diffusion coefficient of the square platelets 

diffusing on a planar surface, as obtained from experimental measure
ments). Thus, the experimental timescale is intermediate for trans
lational motion and quite short for rotational motion in the context of 
Brownian dynamics. Based on the above considerations, for the MSD 
described by Eq. (7), we retain the quadratic term. In contrast, for the 
MSAD given by Eq. (8), the quadratic term is found to be negligible. This 
allows us to simplify Eq. (8) to Eq. (9). 

〈
Δθ2(Δt)

〉
≈ 2

kBT
ζI3

Δt + o(Δt) (9) 

For the MSD, given that I1 = mL2/12 (~3.1 × 10− 27 kg/m2), the term 
mR2 (3.3 × 10− 25–9.7 × 10− 24 kg/m2) is significant in Eq. (7). Conse
quently, the coefficient of the linear term can be approximated to be 
4 kBT

ζm . Then, at short time scales, when the second quadratic term in Eq. 
(7) is negligible compared with the linear term, the power-law exponent 
of the MSD is predicted to be 1, and the diffusion coefficient nearly re
mains constant for different curvatures. At intermediate time scales, 
however, the quadratic term has contributions. Again, given mR2 >> I1, 
the quadratic term coefficient − 4

3
(kBT)2R2

ζ2(I1+mR2)
2 ∝ − 1/R2, then it decreases 

with increasing curvature, which will lead to the deviation of the power 
law exponent of MSD from 1 as the curvature increases, consistent with 
the experimental results (Fig. 2b). Specifically, the complex metric 
tensor of the system endows the (ϕ,ϑ,γ) configuration space with a non- 
Euclidean geometric structure. This curvature-induced distortion man
ifests in the Laplacian (e.g., through the cotϑ

I1+mR2
∂

∂ϑ term in Eq. (5)), 
modifying the solution of the Smoluchowski equation. As a result, the 
probability density evolution no longer adheres to a standard Gaussian 
distribution with linearly increasing variance, ultimately leading to the 
observed deviation from linear MSD scaling at longer times. The grav
itational force acting on the particles further exacerbates this deviation. 
For MSAD, the linear term in Eq. (9) predicts the power law exponent of 

Table 1 
The calculated hg, r̂g and tg for spherical surfaces with different K.

K (μm− 1) hg (μm) r̂g (μm) tg (s)

0.11 0.348 2.6 180
0.06 0.348 3.4 308
0.04 0.348 4.1 447
0.03 0.348 5.1 692
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MSAD at short time scales is 1 and the rotational diffusion coefficient Dθ 
shall be independent of the curvature, which matches well with the 
experimental results (Fig. 3c and 3d).

The expression of Eq. (7) hints that if we define a dimensionless time 
τ = D Δt/

(
I1 + mR2), the small-time power series expansion of MSD can 

be written as 
〈
̂Δ r→

2
(Δt)

〉
= f(τ) = a0 + a1τ+ a2τ2 +⋯ (10) 

where f(τ) is a function of τ. This conjecture can be verified analytically. 
By solving the Smoluchowski equation Eq. (2), one can obtain the 
explicit expression of f(τ), as given by Eq. (C5) in Appendix C. This 
expression is, in principle, valid across all time scales.

The comparison between the experimental measurements of MSD 
and the theoretical predictions is shown in Fig. 5a. At early times, the 
experimental data and the theoretical predictions are in excellent 
agreement. However, as the value of τ exceeds 10− 3, the experimental 
curve shows a slower growth than theoretical prediction. This discrep
ancy may be attributed to the effect of gravity, which restricts the par
ticles from exploring the full configuration space of the sphere, thereby 
leading to a slower long-time diffusion behavior. Another notable 
observation is that when the dimensionless time τ is taken as the x-axis, 
the MSD curves normalized by surface curvatures for each different 
substrate surface collapse onto a common one. This further supports the 
validity of the Smoluchowski theory.

On the other hand, calculating the full-time-scale MSAD formula 
theoretically is much more challenging than that of the MSD. Therefore, 
in comparing experimental MSAD data with theoretical predictions, we 
use the small-time expansion given by Eq. (8) as our theoretical 
benchmark. As shown in Fig. 5b, the experimental MSAD data align well 
with the theoretical prediction across the entire observation time scale. 
This close agreement indicates that the dynamics of MSAD exhibit a 
small-time free-diffusion characteristic throughout the entire observa
tion time interval.

4. Conclusions

In this study, we have experimentally studied the single-particle 
diffusive behavior of Brownian square platelets on spherical surfaces 
with four curvatures ranging from 0.03 μm− 1 to 0.11 μm− 1. For trans
lational diffusion, the squares showed sub-diffusive behavior at short 
time scale (50 s, comparable to the relaxation time) on spherical sur
faces. Moreover, the exponent of the mean square displacement (MSD) 
decreased as the curvature increased. In contrast, other research groups 
studying particle diffusion at oil-water interfaces have focused on the 
diffusion coefficient in the linear regime of MSD and have concluded 
that the diffusion coefficient of particles decreases as the size of the oil 

droplet becomes smaller [18,20]. Danov et al. have shown that the 
recirculation effect influences particle motion at liquid-liquid interfaces 
when the ratio of the droplet radius to the particle radius is relatively 
small [21]. However, the recirculation effect and the diffusion-induced 
droplet deformation discussed in other work [18] do not apply to solid 
surfaces. By applying the Smoluchowski equation to a spherical surface, 
we demonstrated that the derived model aligns remarkably well with the 
observed trend of decreasing translational diffusion index αT as curva
ture K increases in our experiments. This consistency indicates that the 
geometric effect of the spherical surface plays a significant role in the 
colloidal translational dynamics. One of the reasons to have different 
particle dynamics on soft and hard interfaces may be due to the fact that 
when particles come into contact with a soft interface, deformation 
occurs at the point of contact. This deformation can significantly 
diminish the influence of local curvature, thereby reducing the impact of 
geometric effects on particle dynamics. However, to test this hypothesis, 
more future work is needed.

For rotational diffusion, we note that our work is the first experi
mental investigation of the rotational motion of colloids on spherical 
surfaces with varying curvatures since rotations of squares can be easily 
discerned. Moreover, considering that angular displacement on spher
ical surfaces cannot be directly obtained by subtracting square orien
tations, in this study we proposed a new way to quantitatively assess the 
angular displacement for anisotropic particles diffusing on spherical 
surfaces. The proposed new method can also be applied for evaluating 
rotational motion on curved surfaces in related studies. Unlike trans
lational behavior, the measured rotational results revealed that rota
tional dynamics remained unchanged as curvature varied, which aligns 
with predictions from the Smoluchowski equation. The consistency 
observed between experiments and models in both translational and 
rotational motions underscores the significant impact of spherical sur
face geometry on colloidal diffusion.

The colloidal diffusion on curved surfaces is a complex process 
influenced by various factors, including the geometric properties of the 
surface, hydrodynamic interactions, gravity and depletion attractions in 
our system. Our previous work revealed that depletion attractions play a 
critical role in the diffusion of square platelets on cylindrical surfaces, 
particularly in their rotational motion [32]. Specifically, the fluctuation 
range of the orientational angle of squares is significantly reduced in 
cylinders with high curvature due to the orientation-dependent deple
tion attractions. In contrast, on spherical surfaces our numerical results 
demonstrate that the depletion attraction weakens as the curvature of 
the spherical surface increases. Thus, in this study it is not the depletion 
attraction but the geometry of the substrate surface that primarily hin
ders the translational diffusion of squares on highly curved surfaces, 
thus uncovering a crucial role that the substrate geometry plays in the 
diffusion of squares. Future work could investigate whether such effect 
of substrate geometry is particle-shape dependent or not by testing other 

Fig. 5. Comparison of experimental measurements of mean squared displacement (MSD) (a) and mean square angular displacement (MSAD) (b) with theoretical 
predictions.
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anisotropic particle shapes, such as triangular or pentagonal platelets, to 
further elucidate the interplay between particle shape and substrate 
surface geometry.

Our research offers new insights into the diffusion of anisotropic 
particles on hard spherical surfaces, providing valuable perspectives and 
potential solutions for a broad range of mass transport challenges. 
Additionally, the method for fabricating PDMS-based sample cells with 
spherical surfaces, as well as the approach developed in this study to 
measure mean squared angular displacement (MSAD) on spherical sur
faces, are both practical and easily adaptable. These methods can be 
readily extended to investigate the diffusion of other anisotropic parti
cles on curved surfaces, thereby enriching the work on the dynamics of 
anisotropic particles on hard spherical surfaces.
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Appendix A. Derivation of Eq. (3).

For a square platelet with side length a moving on a sphere of radius R, its center of mass lies on a sphere of radius Rʹ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R2 − a2

√
. When a≪R, we 

can reasonably assume that Rʹ ≈ R. The geometric orientation of the platelet can be described by three Euler angles [43] α, β, γ, in which α is the 
precession angle, β is the nutation angle, and γ is the self-rotation angle. The corresponding rotational matrix is 

R(α, β, γ) =

⎡

⎣
cosγ sinγ 0
− sinγ cosγ 0

0 0 1

⎤

⎦ •

⎡

⎣
1 0 0
0 cosβ sinβ
0 − sinβ cosβ

⎤

⎦ •

⎡

⎣
cosα sinα 0
− sinα cosα 0

0 0 1

⎤

⎦ (A1) 

Let e1,e2,e3 be the principal axes of inertial of the platelet at a reference configuration(with e3 perpendicular to the platelet), then after an arbitrary 
rigid body motion specified by the Euler angles α, β, γ, the principal axes become ki = R(α, β, γ)⋅ei. In particular, 

k3 = (sinαsinβ, − cosαsinβ, cosβ) (A2) 

For a square platelet moving on a sphere, the geometric constraint implies that k3 is perpendicular to the tangent plane of the sphere at the center of 
mass, whose normal vector can be described in spherical coordinates ϕ,ϑ by 

n = (sinϑcosϕ, sinϑsinϕ, cosϑ) (A3) 

Identifying k3 with n, we arrive at the relation 
{

α = π/2 + ϕ
β = ϑ (A4) 

According to Euler’s theorem, the rotation of a rigid body about a fixed point can always be represented as a rotation about a fixed axis. The angular 
velocity ω is directed along this axis, and can be expressed as 

ω = ω1k1 +ω2k2 +ω3k3 = [k1 k2 k3 ]⋅

⎡

⎣
sinβsinγ cosγ 0
sinβcosγ − sinγ 0

cosβ 0 1

⎤

⎦⋅

⎡

⎣
α̇
β̇
γ̇

⎤

⎦ (A5) 

Substituting (A4) into (A5), one can find that the rotational kinetic energy of the rigid body is 

Erot =
1
2
(
I1ω2

1 + I2ω2
2 + I3ω2

3
)
=

1
2

ϕ̇
2sin2ϑI1 +

1
2

ϑ̇
2I1 +

1
2
(ϕ̇cos ϑ + γ̇)2I3 (A6) 

where Ii is the moment of inertia of the rigid body about the principal axis ei.The total kinetic energy of the system is the sum of rotational kinetic 
energy and translational kinetic energy of the center of mass: 

Etot = Etran + Erot =
1
2

mR2( ϑ̇
2
+ sin2ϑϕ̇

2)
+ Erot

=
1
2

ϕ̇
2[sin2ϑ

(
I1 + mR2)+ cos2ϑ I3

]
+

1
2

ϑ̇
2( I1 + mR2)+

1
2
(ϕ̇cos ϑ + γ̇)2I3

(A7) 
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Appendix B. Derivation of Eqs. (7) and (8).

Eq. (5) provides the expression for the Laplacian operator, which is a linear combination of first-order partial differential operators and the squares 
of these operators. Let f = (Rϑ)2 be the sqaure displacement of a single platelet, a direct calculation yields 

Δgf =
R2

I1 + mR2 (2+ 2ϑcotϑ) (B1) 

At the initial position x0, without loss of generality we can assume that ϑ = 0, hence 

Δgf
⃒
⃒
x0

=
4R2

I1 + mR2 (B2) 

Similarly, let h = (Δθ)2 be the square angular displacement of a single platelet, from Fig. 3 one can observe that 

Δθ = Δϕ + Δγ (B3) 

Therefore 

Δgh =
1

I1 + mR2

(
2

sin2ϑ
+2cot2ϑ − 4

cosϑ
sin2ϑ

)

+
2
I3

(B4) 

Hence 

Δgh
⃒
⃒
x0

=
2
I3

(B5) 

On the other hand, apply Δg to f twice gives 

Δ2
g f =

R2

I1 + mR2Δg(2+2ϑcotϑ) =
2R2

(
I1 + mR2

)2

(

cot2ϑ −
2

sin2ϑ
+

ϑcotϑ
sin2ϑ

)

(B6) 

Hence 

Δ2
g f
⃒
⃒
⃒
x0

= −
8
3

R2

(
I1 + mR2

)2 (B7) 

Apply Δg twice to h gives 

Δ2
g h = 2

sec4(ϑ/2)
(
I1 + mR2

)2 (B8) 

Hence 

Δ2
g h
⃒
⃒
⃒
x0

=
2

(
I1 + mR2

)2 (B9) 

Eqs. (7) and (8) can be readily obtained by substituting (B2), (B5), (B7) and (B9) into eq. (6).

Appendix C. Derivation of the Theatrical Prediction of Eq. (10).

The solution of the Smoluchowski eq. (2) can be expressed as 

P(θ,ϕ, γ, t) =
∑

n,k,ℓ
eλn,k,ℓDt〈un,k,ℓ|P0

〉
un,k,ℓ(θ,ϕ, γ) (C1) 

Here n ranges in all non-negative integers, and k and ℓ ranges in all integers, 〈f |h〉 is the inner product between complex-valued functions defined 
by 

〈f |h〉 =
∫ 2π

0
dϕ

∫ 2π

0
dγ

∫ π

0

̅̅̅̅
G

√
dθ f *(θ,ϕ, γ)h(θ,ϕ, γ) (C2) 

In Eq.(C2), G = I3
(
I1 + mR2

)2sin2θ is the determinant of the metric tensor g. The eigenfunctions 
(
un,k,ℓ

)
of the Laplacian operator Δg form a 

complete orthonormal basis of the Hilbert function space, and are given by 

un,k,ℓ(θ,ϕ, γ) = An,k,ℓeikγeiℓϕsin|k− ℓ|
(θ/2)cos|k+ℓ|(θ/2)P(|k− ℓ|,|k+ℓ|)

n (θ) (C3) 

in which An,k,ℓ is the normalization factor, and P(α,β)
n is the Jacobi polynomial [44]. The associated eigenvalue is 

λn,k,ℓ = −
1

I1 + mR2

[

n(n+1)+max{|k|, |ℓ|}(max{|k|, |ℓ|}+2n+ 1 )+
I1 + mR2 − I3

I3
k2

]

(C4) 

Averaging the function θ2 with respect to the right-hand side of Eq.(C1) leads to 
〈
θ2〉 =

∑∞

n=0

2n + 1
2

gθ2 (n)e− n(n+1)D Δt/(I1+mR2) (C5) 
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in which gθ2 (n) =
∫ π

0 dθP(0,0)
n (cosθ)θ2sinθ is a geometric factor. The eq. (C5) is consistent with the eq. (D6) in literature [45], which describes the MSAD 

of a Brownian particle moving on a sphere. Now define the dimensionless time τ = D Δt/
(
I1 + mR2

)
and the desired expression of 

〈
̂Δ r→

2
(Δt)

〉
= f(τ)

follows.

Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcis.2025.138513.

Data availability

Data will be made available on request.
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[40] F. Manca, P.-M. Déjardin, S. Giordano, Statistical mechanics of holonomic systems 
as a Brownian motion on smooth manifolds, Ann. Phys. 528 (2016) 381–393.

[41] P. Castro-Villarreal, Brownian motion meets Riemann curvature, J. Stat. Mech.: 
Theor. Exp. 08 (2010) 08006.

[42] C. Solano-Cabrera, P. Castro-Villarreal, R. Moctezuma, F. Donado, J. Conrad, 
R. Castaneda-Priego, Self-assembly and transport phenomena of colloids: 
confinement and geometrical effects, Ann. Rev. Condens. Matter Phys. 16 (2025) 
41–59.

[43] H. Goldstein, Classical Mechanics, 2nd ed, Addison-Wesley, 1980.
[44] D. Duverney, An Introduction to Hypergeometric Functions, Birkhäuser, Cham, 
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Priego, S. Estrada-Jiménez, A Brownian dynamics algorithm for colloids in curved 
manifolds, J. Chem. Phys. 140 (2014) 214115.

Y. Shi et al.                                                                                                                                                                                                                                      Journal of Colloid And Interface Science 700 (2025) 138513 

10 

https://doi.org/10.1016/j.jcis.2025.138513
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0005
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0005
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0005
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0010
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0010
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0010
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0015
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0015
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0020
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0020
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0020
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0025
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0025
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0030
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0030
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0035
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0035
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0040
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0040
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0040
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0045
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0045
https://arxiv.org/abs/2411.14712
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0050
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0050
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0050
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0055
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0055
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0055
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0060
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0060
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0060
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0065
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0065
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0065
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0070
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0070
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0075
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0075
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0075
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0080
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0080
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0085
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0085
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0085
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0090
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0090
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0095
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0095
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0100
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0100
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0105
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0105
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0105
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0110
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0110
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0110
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0115
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0115
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0115
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0120
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0120
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0125
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0125
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0130
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0130
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0135
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0135
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0135
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0140
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0140
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0145
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0145
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0150
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0150
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0150
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0155
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0155
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0155
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0160
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0160
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0165
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0165
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0170
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0170
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0175
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0175
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0180
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0180
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0185
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0185
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0190
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0190
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0190
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0195
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0195
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0200
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0200
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0205
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0205
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0205
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0205
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0210
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0215
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0215
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0220
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0220
http://refhub.elsevier.com/S0021-9797(25)01904-6/rf0220

	The single-particle dynamics of square platelets on an inner spherical surface
	1 Introduction
	2 Experimental part
	2.1 Preparation of a sample cell containing spherical substrate surfaces
	2.2 Colloidal suspensions
	2.3 Sample preparation for the control experiment - colloids diffusing on a planar surface
	2.4 Data collection and image analysis

	3 Results
	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Derivation of Eq. (3).
	Appendix B Derivation of Eqs. (7) and (8).
	Appendix C Derivation of the Theatrical Prediction of Eq. (10).
	Appendix D Supplementary data
	Data availability
	References


