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Hyperuniform mixing of binary active spinners†

Rui Liu, *a Mingcheng Yang ab and Ke Chenab

Spinner mixtures consisting of both clockwise and counterclockwise self-spinning particles are often

expected to phase separate. However, we demonstrate that such a demixing is absent for dimer (or rod-

like) spinners. These particles always mix, even in a globally-hyperuniform way, with the total structure

factor S(q - 0) B qa (a 4 0). This global hyperuniformity can be enhanced or weakened by changes in

the driving torques or the particle density. The corresponding microscopic mechanism is attributed to

the competition between a dynamical heterocoordination effect and effective like-particle attractions.

Critical scaling for the absorbing state transition of the system is also found to persist, with a significant

shift in its critical point observed. The system can be further thermalized, by the driving torques or

through thermostating, into an ideal solution with identical partial radial distribution functions, which

denies the possibility of being multi-hyperuniform. A simply-extended coupled density-oscillator theory

explains why the system cannot be multi-hyperuniform, but can have a global hyperuniformity with

the scaling exponent a approaching 2. Such a hyperuniform mixing provides a way to regulate the

topological boundary flows of this chiral system, and this mixing regulation is found to barely affect the

bulk density fluctuations, or even preserve the localization of the flows and the bulk hyperuniformity.

1. Introduction

Disordered hyperuniformity is an exotic property of matter,
which indicates that the structure is isotropic as a liquid but
suppresses long-wavelength density fluctuations as a crystal.1–3

The concept has been extended to binary or multi-component
systems, in which two-phase hyperuniformity,4,5 global hyper-
uniformity6 and multi-hyperuniformity7,8 have been extensively
investigated. Hyperuniformity properties are also known to
persist in the active or fluidic states of single-component
nonequilibrium/active systems.9–12

Binary or multi-component fluids may mix. Fluid mixing is a
fundamental process in nature and industry, and a common
problem in this process is whether a uniform mixture of
different components can be obtained. External disturbing/
driving, such as stirring, is usually employed to ensure that
the liquid can be uniformly mixed. Active matter is driven by its
internal energy sources, and thus would be usually more likely
to mix. Whether or how hyperuniformity would persist for
active fluidic mixtures remains to be explored. A recent study
on a robot mixture with programmed nonreciprocal interactions13

shows that hyperuniformity may exist at least in its critical
absorbing state.

Active spinner systems, which consist of self-spinning par-
ticles, have been widely studied in recent years. They are known
to exhibit a variety of interesting behaviors, such as phase
separation,14–16 jamming,17 and topological effects.18–21 Spin-
ner mixtures consisting of both clockwise and counterclockwise
self-spinning particles are often expected to phase separate.
Even in purely repulsive systems, spinners with opposite rota-
tion directions are found to segregate due to effective like-
particle attractions,14,15 and such a spin segregation may be
even concomitant with a motility-induced phase separation.22

For more complicated ‘‘wet’’ spinners, segregation can also be
achieved.16 Though there are cases that disc-shaped spinner
mixtures driven by air do not phase separate23,24 (probably due
to the relatively weak tangential interactions between the
particles), spin segregation is still anticipated to be observed
as discussed in the earlier work.23 Thus, spinner mixtures are
generally expected to phase separate, especially for dry, purely-
repulsive, and strongly-interacting systems. However, in this
paper, we demonstrate that such a demixing behavior is absent
for dry, repulsive dimer (or rod-like) spinners. These particles
always mix, even in a hyperuniform way.

Through numerical simulations, we reveal that hyperunifor-
mity typically persists in a global way for such a binary spinner
fluid. The competition between dynamical heterocoordina-
tion and effective like-particle attraction can affect the long-
wavelength scaling law of the total structure factor of the
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system. The heterocoordination effect may also cause a signifi-
cant shift in the critical point of the absorbing state transition
of the system. Subsequently, we show that increase in the
driving torques may enhance the global hyperuniformity and
that in density may somehow weaken it, leading to a collapsing
long wavelength behavior in the total structure factor. Further-
more, the spinner mixture is shown to be thermalized into an
ideal solution through either increasing the driving torque or
particularly by thermostating.

Meanwhile, we extend the density oscillator model by Lei &
Ni,10 simply through introducing some linear couplings, to this
binary system, which explains why the system cannot be multi-
hyperuniform, but can have a global hyperuniformity with the
scaling exponent a approaching 2. As a potential application,
we further show that such a mixing can provide an intriguing
way to regulate the robust topological boundary flows of such
chiral active fluids, which preserves localization of the flows
and hyperuniformity properties in the bulk.

2. Simulation and theory

We simulate a two-dimensional (2D) active spinner system as
that in our previous study.11 Each spinner is a dimer consisting
of two spherical monomers bonded with a fixed length s = 1.
Each monomer has a mass m = 1 and each dimer has a moment

of inertia I ¼ 1

2
ms2. The monomers from different dimers

interact with each other through a Weeks–Chandler–Andersen

potential U rij
� �

¼ 4ê
s
rij

� �6

� s
rij

� �12
" #

þ ê, when their separa-

tion rij is smaller than a cutoff distance rc� 21/6s. With the total
effect of all such pair interactions denoted by U(t), the dynamics
of any dimer i is governed by

2mr̈i = �2gt
:ri � riU(t) + ni(t), (1)

I€yi = �t � gs
_yi � qyi

U(t) + zi(t). (2)

Assuming ê = 1 energy unit, and taking t̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=ê

p
to be the

time unit, we always set the translational frictional coefficient
gt = m/t̂ and the rotational counterpart gs = I/t̂ in our simulation.
The driving torques �t are respectively applied to make the
dimers spin in the counterclockwise and clockwise directions (a
percentage composition of 50 : 50 is usually adopted, if not
specified). ni(t) and z(t) are respectively the stochastic force and
torque due to thermal fluctuations: hni(t)nj(t0)i = 2gtkBTdijd(t � t0),
hzi(t)zj(t0)i = 2gskBTdijd(t � t0). The timestep of the simulation is
adjusted accordingly for different driving torques and thermo-
stating temperatures.

Typically, a system with N dimers in a square box of size L is
simulated, and the number density is evaluated as r = N/L2, or
f = Ns2/L2 in a dimensionless way. Periodic boundary condi-
tions are applied for all the box boundaries. Similar measure-
ments are adopted for the system simulated in a disc container
to demonstrate the regulation of topological boundary flows,
where a smooth spherical wall is used to confine the system.

All simulations run for no less than 3 � 107 time steps, to
ensure the system reaches a steady state and good statistical
results can be obtained.

The dimers are driven through torques acting on each
monomer, which thus preserve the center-of-mass conservation
(COMC). COMC is crucial for density hyperuniformity,9,25 and
this provides a general explanation as to why spinner systems
possess hyperuniform properties in various manners.10,11,26

By neglecting the spin–orbit coupling, and encoding the driving
effect into the kinetic temperature Tk, a generic density oscil-
lator theory for such active fluids is given by Lei & Ni10 (see also
Section V in the ESI† for a brief review):

@2drq
@t2

¼ �Gq

@drq
@t
�Dq2drq þ q2sr þ qst; (3)

where dr is the density fluctuation, q is the modulus of the wave
vector q, Gq describes the total effect of both the substrate
friction and kinematic viscosities, D describes the diffusional
effect, and sr denotes the longitudinal term of the collisional
noise. Transverse modes are ignored since they are irrelevant to
the density fluctuations. Additionally, a longitudinal thermal
noise term st is added here.

A simple extension to the binary system would be assuming
linear coupling between the density fluctuations of the two
species: dr = (dr1, dr2)T. Thus the dynamical coefficients Gq and
D become matrices:

Gq ¼
gþ Zq2 w

w gþ Zq2

" #
; D ¼

cs
2 b

b cs
2

" #
; (4)

where g = gt/m is the reduced frictional coefficient, Z is the
longitudinal viscosity, cs is the sound speed, w describes the
inter-species momentum transfer as a frictional term, and b
measures the effect of inter-species pressure on diffusion.

Obviously, each species by itself does not preserve COMC.
Thus the collisional noise sr cannot be naively decomposed
into two surface terms. We assume, for each species, that the
noise can be decomposed into a gradient term and an ordinary
thermal-like noise. Thus we have

q2sr - (q2sr
1 + q�dsr, q2sr

2 � q�dsr)T. (5)

In this way, we have the separated COMC terms of colli-
sional noises ~sr = (sr

1, sr
2)T and effective longitudinal thermal

noises ~st = (st
1 + dsr, st

2 � dsr)T � (st
1 + dsr

1, st
2 + dsr

2)T.
By performing a temporal Fourier transform, eqn (3) can be
rewritten as:

(�o2I � ioGq + Dq2)dr(q,o) = q2~sr + q~st. (6)

Assuming that all random terms are both spatially and tempo-

rally white: srms
r
n

D E
ðq;oÞ ¼ a Tkð Þr

ffiffiffiffiffiffiffiffiffiffi
xmxn
p

dmn , dsrmds
r
n

D E
ðq;oÞ ¼

b Tkð Þr
ffiffiffiffiffiffiffiffiffiffi
xmxn
p

emn , and stms
t
n

D E
ðq;oÞ ¼ cðTÞr ffiffiffiffiffiffiffiffiffiffi

xmxn
p

dmn (xm,n are

respectively the concentrations of species m and n; T is the
temperature of the thermostat and the driven system has a non-
zero kinetic temperature Tk even at T = 0; emn = 1 for m = n, and �1
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for m a n), one obtains the following results for an equimolar
system (x1 = x2 = 1/2):

Sm;nðq;oÞ ¼ drmdr
�
n

D E
¼
X
kl

MmkM
�
nl q4 srks

r
l

� �
þ q2 ~stk~stl

� �	 


¼ 1

2
aq4 þ cq2
� �

r
X
l

MmlM
�
nl þ

1

2
bq2r

X
kl

MmkM
�
nlekl;

where h�i denotes an ensemble average, and M = (�o2I � ioGq +
Dq2)�1. Due to the symmetry of M, all calculation results will reduce
to matrix elements of K = MM*:

S11ðq;oÞ ¼ S22ðq;oÞ

¼ r
2

aq4 þ cq2
� �

K11 þ bq2 K11 � K12ð Þ
	 


;

S12ðq;oÞ ¼ S21ðq;oÞ

¼ r
2

aq4 þ cq2
� �

K12 � bq2 K11 � K12ð Þ
	 


:

Then the total structure factor is given by:

Sðq;oÞ ¼
X
mn

Smnðq;oÞ

¼ r aq4 þ cq2
� �

K11 þ K12ð Þ:

The bq2 terms simply cancel out, and the cq2 terms will not be
present for the case without thermal noise. By integrating with o,
one obtains:ð1

�1
K11 � K12ð Þdo ¼ p

q2 cs2 � bð Þ gþ Zq2 � wð Þ:

For T = 0, we simply have S(q - 0) B q2:

SðqÞ ¼
ð1
�1

Sðq;oÞdo ¼ praq2

cs2 þ bð Þ gþ Zq2 þ wð Þ: (7)

Thus, theoretically, hyperuniformity may persist in such a
binary fluid, keeping the scaling exponent a = 2. However, the
inter-species and inner-species spinner–spinner interactions
are generally different, and thus there is pairing noise which
causes local concentration fluctuations. The pairing noise

preserves COMC only globally, but not locally. This may lead
to q-dependencies in the above correlation functions of the
random terms, which would further cause a decrease in the
scaling exponent a. Thus a weaker hyperuniformity charac-
terized by a smaller a is acceptable (see Section VI in the ESI†
for more explanation).

One may expect the binary system to be multi-hyperuniform.
However, we have S11 B aq2 + b with a nonvanishing
q-independent term b, which indicates that the subsystem
constituted by one of the two species is inevitably non-
hyperuniform. Thus, we do not have a multi-hyperuniformity
in general. Nevertheless, the global hyperuniformity with a
scaling exponent a approaching 2 can still be expected.

3. Dynamical heterocoordination and
global hyperuniformity

Numerically, we first investigate such a spinner system without
thermal noise, i.e. T = 0. Fig. 1 shows our simulation results of
the system at different densities. We observe an effective
unlike-particle attraction for all the cases: the cross terms gmn(r)
(m a n) of the partial radial distribution functions surpass the
diagonal terms gmm(r) (m = 1, 2) just before/at the major peak, as
shown in Fig. 1(a). This is similar to that of the negatively-
nonadditive hard-disk plasmas,6 which show a heterocoordina-
tion effect and do not have a demixing transition. These effects
are demonstrated to be compatible with a global hyperunifor-
mity for the binary mixture.

Demixing is also found to be absent here for our dimer (or
generically rod-like) spinners, and we expect a similar global
hyperuniformity to be observed as that in negatively-
nonadditive hard-disk plasmas. We calculate the total structure
factor6,8 for this system:

SðqÞ ¼ 1þ r
X
mn

xmxnF gmnðrÞ � 1
	 


ðqÞ

¼ 1þ r
X
mn

xmxnhmnðqÞ
(8)

where F[�] represents a Fourier transform, h(q) � F[h(r)](q) =
F[g(r) � 1](q). The corresponding results are shown in Fig. 1(b).

Fig. 1 The binary active spinner system at t = 1, T = 0, L = 200s, and varying f = 0.20, 0.25, 0.30, 0.35: (a) partial radial distribution functions gmn(r)
(vertically shifted by 1 for each f, which is adopted below without further explanations); (b) the total structure factor, with S(q - 0) B qa.
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Generally, we have the power-law scaling in the total struc-
ture factor S(q - 0) B qa with a \ 1 for all f Z 0.20, which
indicates a strong global hyperuniformity for all densities in the
active fluidic regime. The system stays in an absorbing state
below fc E 0.19 [which has the critical scaling exponent ac E
0.45 as shown in Fig. 1(b)], and becomes a mixed active fluid
above this critical point (see Sections I & II in the ESI† for more
details on the transition). Compared with Lei & Ni’s result that
fc o 0.15,10 we have an observable shift in the critical density,
due to the dynamical heterocoordination effect. Another sig-
nificant difference in this binary system is that it does
not exhibit the same scaling S(q) B q2 beyond the critical
point, i.e. in the active state, which holds for single-component
systems.9,10

We have a maximum exponent a E 1.8 at about f = 0.25,
which is close to the value a = 2 for single-component spinners.
We assume that this corresponds to the predicted results
S(q) B q2 in the theory section. The exponent first increases
from the critical value 0.45 to 1.8 and then decreases to a
relatively lower value a = 1.4, as the density increases, giving a
varying scaling law at long wavelengths. We argue that the
varying scaling law and the deviation from a = 2 are due to the
competition between dynamical heterocoordination and some
effective like-particle attraction. We observe that for a denser
system at f = 0.35, g11(r) becomes higher than g12(r) just before
the major peak [Fig. 1(a)], which may indicate an effective like-
particle attraction. The dynamical heterocoordination effect is
likely to enhance mixing, while the effective like-particle attrac-
tion tries to induce a phase separation. The competition
between these two effects causes the so-called pairing noise,
which does not preserve COMC locally. Thus, one observes such
a non-monotonic change in the scaling exponent a.

Previously, the effective like-particle attractions are adopted
to explain how binary spinners phase separate.14,15 The micro-
scopic picture for such an attraction is depicted as: pairs of like
particles stay together relatively longer than unlike-particle
pairs during collisions. However, for the dimmer or rod-
shaped spinners here, we argue that like pairs have large
relative tangential velocities during collisions, and a system
minimizing its dissipation would avoid like pairing in its
steady state. Or equivalently, unlike dimers with proper phase

differences can stay closer into each other’s sweeping range
(see Fig. S5 in Section IV of the ESI†), which can be effectively
treated as an attraction. All these effects are subtle. What favors
unlike pairing may be roughly compensated by what else favors
like pairing. This may finally lead to an ideal mixing with
identical radial distribution functions for the two species
(see below).

4. Enhanced hyperuniformity and
self-thermalization

The driving torques of the spinners would enhance the global
hyperuniformity at low densities. An apparent example would
be the system at density f = 0.15, as shown in Fig. 2. At t = 1, the
system is below the critical point of the absorbing state transi-
tion, which is thus intrinsically non-hyperuniform. However
it becomes strongly hyperuniform with the scaling exponent
a\ 1.5 at t = 5, as shown in Fig. 2(b). The critical density of the
transition decreases to an even lower value fc E 0.099 [the data
with q0.45 scaling as a guide for the eye in Fig. 1(b)]. For the
system at f = 0.2, which is in the active state for both t = 1 and
5, a significant promotion in the scaling exponent a from the
critical value 0.45 to about 1.5 is also observed, compared with
the data shown in Fig. 1(b).

However, for larger densities, high torques seem to be not
beneficial to hyperuniformity. As can be seen from Fig. 2(b), the
scaling exponent a for f = 0.35 or 0.4 is just about 1.2, which is
lower than that of f = 0.2, or even the corresponding value of its
own at t = 1 in Fig. 1(b). This weakening in hyperuniformity
is due to the effective like-particle attraction, identified by
g11(r) 4 g12(r) just beyond r = 1s as shown in Fig. 2(a). This
effect dominates only at nearer separations of the spinners,
which thus usually require a larger density for the system.

Moreover, high torques seem to make the long wavelength
(small q) behaviors of S(q) at different f collapse, but distin-
guish the density differences in the intermediate range of q.
The scaling exponent increases rapidly from the critical value
ac = 0.45 to about 1.5 (see Section III in the ESI†for more data in
between), and stays in roughly the range (1.2, 1.5) for a wide
range of densities f \ 0.15, as shown in Fig. 2(b). The collapse

Fig. 2 The binary active spinner system at t = 5, T = 0, L = 200s: (a) The partial radial distribution functions gmn(r); (b) the total structure factor S(q);
dashed lines show some asymptotic scalings at long wavelengths.
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is due to the joint effect of torque-enhancing and density-
weakening effects mentioned above. The intermediate range
at the order of qs B 1 corresponds to the length scale of
spinner–spinner interactions, and structures at these length
scales may be significantly changed by the driving torques.

Accompanied with the enhancement of hyperuniformity, we
observe an identification of all partial radial distribution func-
tions gmn(r) of the system, for densities f o 0.35 [Fig. 2(a)].
All gmn(r) become more and more identical as the density
increases from 0.15 to 0.30. This is obviously due to the increased
probability of spinner–spinner interactions. Larger torques would
heat the system up more easily and thus also enhance the
spinner–spinner interactions. Identical partial radial distributions
correspond to an ideal solution described by the substitutional
model of Faber & Ziman,27 which has a constant concentration–
concentration structure factor Scc(q). Thus, the system cannot be
multi-hyperuniform, which requires both vanishing S(q) and Scc(q)
as q approaches zero. However, the system can still be globally
hyperuniform as discussed above, since we do not introduce any
thermal noise (T = 0), which does not abide by COMC. The current
thermalization only causes a slight decrease in the scaling expo-
nent a, as the density increases. Since such a thermalization is
much easier to be achieved in the presence of thermal noise, we
will discuss it further below.

5. Thermalization and ideal solution

Thermal noise is known to weaken or destroy hyperuni-
formities.28 We also investigate the thermal effects on the global
hyperuniformity of this binary mixture. We observe a notable
thermalization characteristic for a wide range of densities:

g11(r) = g22(r) = g12(r) = g21(r). (9)

Namely, we have again identical partial radial distribution
functions [as shown in Fig. 3(a)], which correspond to an ideal
solution with constant concentration–concentration
fluctuations6,8,29 at all modes, i.e.:

SccðqÞ ¼ x1x2 1þ rx1x2
X
mn

emnhmnðqÞ
" #

¼ x1x2: (10)

For an equimolar binary system, one has Scc(q) = 0.25.

Thus, as mentioned above, there is no chance for the system
to become multi-hyperuniform. We still calculate the total
structure factor S(q) for the system, which is shown in
Fig. 3(b). We have a robust scaling relation S(q) B q0.08 at small
q, though the constant exponent is rather small. This could
be the remnant of the above non-thermal hyperuniformity,
and one may conclude that such a thermalized system is
rather weakly hyperuniform or just nonhyperuniform in the
global sense.

However, we still observe a drastic decrease in S(q - 0) as
the density of the system increases. This is due to the fact that
the system starts to pack for increased density. Such a packing
effect would lead to a jamming-type hyperuniformity30,31 or
spinners’ nonhyperuniformity with lowly-confined density
fluctuations.11 In either case, the long-wavelength behavior
S(q - 0) should be decreased, as has been observed.

6. Preserved hyperuniformity in mixing
regulation

The chiral system of single-component spinners is known to
exhibit robust topological boundary flows.18,19 Usually, it would
be a challenge to regulate such a flow without altering the
corresponding carrier density. Since binary spinners can mix
hyperuniformly, we may utilize such a feature to tune the
topological boundary flow by simply adjusting the concentra-
tions of the two species in the system.32 Such a regulation
would be preferable in experimental systems, especially for
sealed samples where the density of particles can be hardly
changed.

Here, we focus on the regulation effect on the density
fluctuations in the bulk. Fig. 4(a) shows the total structure
factor S(q) corresponding to a system with weakly-localized
boundary flows in a disc of size R = 100s, where the flow profile
extends to the center of the disc (see the inset). The measure-
ment of S(q) is performed in a square subarea of size Ls = 0.8R
at the center of the disc. The subsystem does not preserve
COMC globally, due to the in- and out-flows of particles. For the
existence of the obvious flow, the whole system possesses no
obvious hyperuniformity features. While the regulation is effec-
tive for the whole flow field, we observe a preservation in the

Fig. 3 Thermalization of the binary spinner system at t = 1, T = 1, L = 200s: (a) Identical partial radial distribution functions gmn(r) at various densities; (b)
the total structure factor S(q), with a drastic decrease in S(q - 0) as the density increases; dashed lines show a q0.08 scaling.
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density fluctuations of the bulk: the total structure factor S(q) is
nearly collapsed for different concentrations in the full range
[0,1], which indicates that the density fluctuations in the bulk
are not significantly altered by the regulation.

When the topological boundary flow is strongly localized,
with an inner zero velocity field, the regulation will only affect
the boundary flow, and abides by localization. No obvious flow
in the bulk admits a global hyperuniformity of the mixture,
though COMC is not globally preserved. In Fig. 4(b), we show
the total structure factor S(q) for the same system with a
strongly localized boundary flow (see the inset). The total
structure factor is again nearly collapsed for different concentra-
tions in the full range [0,1], but accompanied by an obvious
hyperuniformity feature S(q - 0) B q0.7. Hence, the mixing
regulation will also preserve localization and hyperuniformity
properties. Though the mixing preservation of localization and
global hyperuniformity is more notable, the fact that such a
regulation barely affects the density fluctuations in the bulk is
more general, which holds for even the non-hyperuniform cases.

7. Conclusions

In conclusion, we show that demixing is absent for binary
dimer (or rod-like) spinner mixtures due to a dynamical hetero-
coordination effect. Global hyperuniformity is also found to
persist in this kind of mixed fluid, and can be enhanced or
weakened by torques or densities in various ways. Correspond-
ingly, a long wavelength scaling law S(q - 0) B qa (a4 0) exists
in the total structure factor of the system, where the exponent
reaches a maximum value of about 1.8 at around f = 0.25. The
deviation in the exponent from the theoretical value 2 and the
variation of the long-wavelength scaling law are attributed to
the results of pairing noises, i.e. the competition between the
dynamical heterocoordination effect and the effective like-
particle attractions. The absorbing state transition with the
critical scaling S(q) B q0.45 is observed as well for this binary
system, and the corresponding critical point is found to shift to
an obviously higher density. When heated up by the driving
torques of the spinners or through thermostating, the binary

system exhibits a notable feature that all partial radial distribu-
tion functions become identical. This leads to a constant
concentration–concentration structure factor, which prevents
the system from being multi-hyperuniform.

As a potential application, such a hyperuniform mixing is
further shown to be beneficial to the regulation of robust
topological boundary flows. The great advantage of this mixing
regulation, that it barely affects the bulk density fluctuations
even in a non-uniform flow field, is rather intriguing. The
regulation method also shows its delicacy in preserving locali-
zation and bulk hyperuniformity for systems with strongly-
localized boundary flows. Experiments on rotors driven by light
or electric/magnetic fields12,33 may hopefully verify our results.
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