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The confliction between the stable interface in phase-separated active Brownian
particles and its negative surface tension, obtained mechanically via the active pressure,
has sparked considerable debate about the formula of active surface tension. Based on
the intrinsic pressure of active system, we here derive a mechanical expression of active
surface tension by calculating the work required to create a differential interface area,
while remaining the interfacial profiles of intensive quantities invariant (not considered
previously). Our expression yields a significantly positive surface tension that increases
with the particle activity, which is further supported by mechanical stability analysis
of both steady-state droplet and fluctuating interface. Our work is thus promising to
resolve the contradiction related to active surface tension.
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Active matter consisting of an ensemble of self-propelled units is an important class of
nonequilibrium systems (1–3) and can exhibit diverse exotic phenomena, forbidden in
thermal equilibrium (4–11). A prominent example is motility-induced phase separation
(MIPS), which refers to a spontaneous gas–liquid phase separation of purely repulsive
active Brownian particles (ABPs) above certain densities and activities (6, 12–15).
Although great progress in the MIPS has been made in the past decade, surface tension
of the active gas–liquid interface, a central physical quantity of the MIPS, still remains
elusive and controversial.

Since Bialké et al. reported that the surface tension 
 is significantly negative
in the phase-separated repulsive ABPs (16), a proper identification of the active 

and the corresponding mechanism of interfacial stability have been widely debated
(17–33). In the work by Bialké et al., 
 is derived mechanically based on active pressure
and the resulting expression is the integration of the difference between normal and
tangential active pressures across the surface region, formally the same as the Kirkwood-
Buff equation (34). Negative surface tension was repeatedly reported by subsequent
studies (17–19). Intuitively, a negative 
 destabilizes the interface and thus contradicts
with the stable MIPS.

The mechanical determination of active 
 needs to identify the pressure of active
systems, and however a consensual interpretation of the latter has yet been reached.
Recently, it has been gradually recognized that the intrinsic pressure in an active system
should be composed of the ideal-gas pressure and the one arising from interparticle
interactions (i.e., corresponding to the traditional pressure definition) (20, 21, 35–40);
while the active pressure aforementioned is the sum of the intrinsic pressure and the
swim pressure (8, 41–43). Within the framework of the intrinsic pressure, the coexisting
gas and liquid phases have different pressures, that are balanced by the polarization-
induced body force at the interface. With the intrinsic pressure, Omar et al. derived a
different mechanical expression of active surface tension, yielding a near-zero but still
negative 
 (20). Moreover, combining the intrinsic pressure and Laplace-like equation,
Lauersdorf et al. also obtained a small 
 but with considerable uncertainty in the sign (21).

On the other hand, despite the out-of-equilibrium nature of active matter, capillary
wave theory (CWT), one of the standard way to determine 
 in passive systems, is
employed to quantify the active surface tension (16–18, 22, 44). Therein, the CWT
assumes an equilibrium-like equipartition relation, in which the traditional thermal
energy is replaced by “housekeeping work” or “effective thermal energy.” Such an
assumption, however, could be invalid in active systems. Another type of approach to
calculate the active surface tension, following the equilibrium thermodynamic route,
is to construct nonequilibrium chemical potential or effective free energy for the
phase-separated ABPs (25–28). Some of them give a positive effective 
 , while other
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may support both positive and negative values (28). Nevertheless,
the equilibrium-like effective thermodynamic treatments are
elusive and not a priori guaranteed by basic thermodynamic
principles, such that the resulting effective 
 is generally not
equivalent to its mechanical counterpart that is well defined even
far from equilibrium. In addition, scalar field theory has been
used to investigate the surface tension for generic continuum
active model in a coarse-grained way (29–32). It also allows both
positive and negative effective 
 , which however has no direct
connection to the mechanical 
 . Therefore, up to now, it is still
a challenging open problem to unambiguously determine the
mechanical surface tension of the phase-separated ABPs.

In this article, we derive a formula for the mechanical surface
tension of the phase-separated ABPs by using the intrinsic pres-
sure to calculate the work required to create a differential interface
area. In our derivation, it is crucial to maintain the interfacial pro-
files of intensive physical quantities when changing the interfacial
area, which is a natural requirement to examine the interface with
exactly specified properties but is omitted in previous studies.
Based on the obtained formula, our simulation results show that
the active 
 is significantly positive, consistent with the stable
interface observed in the MIPS. Furthermore, our findings are
robustly corroborated through direct analyses of the mechanical
stability of steady-state droplet and fluctuating interfaces.

Results

Theory. We first derive the mechanical expression of the surface
tension of the phase-separated ABPs. For convenience, the
following calculation is confined to two dimensions, which
can be straightforwardly extended to three-dimensional systems.
The coexisting system consists of a homogeneous gas phase, a
homogeneous liquid phase and an inhomogeneous surface region
sandwiched between two bulk phases. The bulk pressure and
density are separately Pg and �g for the gas phase, and Pl and
�l for the liquid phase. Note that the pressure in the present
work represents the intrinsic pressure, unless stated otherwise.
To analyze the surface properties, we isolate the surface region
from the whole system, as sketched in Fig. 1 by the red solid
square of length li and width ly, with the x axis perpendicular
to the interface. The boundaries of the surface region are taken
far into each bulk phase. As a result, the density profile �i(x) of
the surface region (represented by the green solid curve in Fig. 1)
saturates to the corresponding bulk-phase values at the positions
far from the Left and Right borders of the surface region (i.e.,
x = 0 and x = li), as well as the pressure profile Pi(x) (not
shown).

An important difference from a passive interface is that the
active interface region possesses a polarization-induced body
force density, f0m(x)x̂, pointing to the dense phase (20, 21, 40).
Here, f0 and m(x)x̂ are the self-propelling force and the local
polarization of active particles, respectively. The latter is given
by m(x) = (1/ly)

∫
P(x, �) cos �d�, where P(x, �) denotes the

probability distribution function of finding a particle locating
at x with an orientation � (with respect to the x axis). In
the steady state, the polarization force on the surface per
unit length, f0M =

∫ li
0 f0m(x)dx, is balanced by the intrinsic

pressure difference between the coexisting gas and liquid, i.e.,
Pl − Pg = f0M .

To obtain 
 from its mechanical definition, that is the work
required to create a unit area of the surface with the volume
fixed (vanishing volume-related work), we isothermally and
quasistatically deform the surface region. We expand the surface

Fig. 1. Schematic of the deformation of the surface region used to derive the
surface tension. The red solid and dashed squares separately represent the
original and deformed surface regions, with the x axis perpendicular to the
surface. The green solid and blue dotted curves denote the density profiles
�i(x) of ABPs in the original and deformed surface regions, respectively, and
they coincide with each other when the deformed surface region lacks a net
whole movement.

region along the y direction by �y (�y � ly), and meanwhile
compress it along the x direction by �x1 and �x2 separately from
its Left and Right boundaries, as displayed by the red dashed
square in Fig. 1. To maintain a constant volume, we have

lily = (li − �x1 − �x2)(ly + �y). [1]

For an equilibrium phase-separated state (Pg = Pl ), the
derivation of 
 does not depend on the specific values of �x1
and �x2, as long as �x1 + �x2 satisfies Eq. 1 (as can be seen from
Eq. 3). However, for the MIPS (Pg 6= Pl ), �x1 and �x2 need
to be specified through an extra condition in order to perform a
proper derivation. The extra important condition, that is usually
neglected but needs to be met during the deformation of the
system, is that the profiles of all intensive quantities (including
the density profile) in the surface region must remain perfectly the
same as their counterparts of the original interface. Otherwise,
the system intensive quantities and hence the system properties
will change (namely the interface we are examining is no longer
the original one), thus giving rise to an improper 
 . In other
words, only under this condition can we obtain the true surface
tension of the original system. Thus, the combination of the
invariant density profile and conservation of particles yields

ly
∫ li

0
�i(x) dx = (ly + �y)

∫ li−�x2

�x1

�i(x) dx. [2]

Here, for simplicity, we have additionally prescribed that the
deformed surface region experiences no net whole displacement
with respect to the original surface region (as indicated by their
overlapping density profiles in Fig. 1), so that the polarization
force does no work.

For the above deformation, the work �W done on the surface
region can be easily written as

�W = Pg ly�x1 + Pl ly�x2 − �y
∫ li

0
PT
i (x) dx, [3]

with PT
i (x) the tangential pressure (in the y direction). From

Eqs. 1–3 and the mechanical definition, 
 = �W /�y, neglecting
higher-order terms, we obtain
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 =
∫ li

0

[
Pg

�l − �i(x)
�l − �g

+ Pl
�i(x)− �g
�l − �g

− PT
i (x)

]
dx. [4]

Eq. 4 is the central result of this article, and it is valid in both
equilibrium and nonequilibrium systems. It should be pointed
out that for a more general deformation of the surface region
that exhibits a net whole movement (say �x′), the pressures and
the polarization-induced force seemingly do extra work on the
interface region, (Pg + f0M − Pl )ly�x′, besides the �W of Eq. 3.
Nevertheless, since Pl = Pg + f0M , the resulting surface tension
is exactly the same as Eq. 4.

It would be instructive to compare the present result, Eq. 4,
with other existing theories. In equilibrium state, Pg = Pl = P,
Eq. 4 reduces to the well-known Kirkwood-Buff expression (34),


 =
∫ li

0

[
P − PT

i (x)
]

dx. [5]

On the other hand, in the ABPs system, by only considering
the area conservation of surface region in Eq. 1 but omitting
the condition in Eq. 2, Omar et al. recently obtained a similar
formula to Eq. 5, but with the bulk-phase P replaced by the local
normal pressure P(x) (20). And, their formula yields a small
negative 
 . Furthermore, by using the active pressure PA (in this
case PA

g = PA
l = PA), Bialké et al. reported a surface tension with

the same form as Eq. 5 (16), nevertheless their 
 is significantly
negative. These negative 
 contradict with our physical intuition
that a mechanically stable active surface, extensively observed in
the MIPS, should possess a positive surface tension.

It is not convenient to directly use Eq. 4 in simulation to
compute the surface tension, since it needs to track the surface
location frequently. A numerically more efficient method is
achieved by extending the interval of integration in Eq. 4 to
the whole system (including the bulk phases and surface region),
because of the null contribution outside the surface region, which
results in


 =
1
2
lx
[
Pg�l − Pl�g
�l − �g

+
Pl − Pg
�l − �g

�0 − P̄T
]

. [6]

Here, the prefactor 1
2 accounts for two surfaces due to periodic

boundary condition, lx refers to the total length of the whole
system in the x direction, and �0 and P̄T are, respectively, the
mean density and the average tangential pressure of the whole
system.

Simulations.
Planar interface. We now implement simulations to compute
the surface tension of the phase-separated ABPs through Eq. 6.
The MIPS is formed by N = 50,000 ABPs of diameter � in a
rectangular box of size lx× ly, with periodic boundary conditions.
The interparticle interactions are described by the Weeks-
Chandler-Andersen potential, U (r) = 4�[(�/r)12

−(�/r)6]+�
if r < 21/6�, and U (r) = 0 otherwise. The motion of particle
i with orientation ni = [cos �i, sin �i] follows the overdamped
Langevin equation,

ṙi = v0ni −
1

t
∇riUt +

√
2Dt�i; �̇i =

√
2Dr�i. [7]

Here, Dt = kBT /
t and Dr = kBT /
r separately are transla-
tional and rotational diffusion coefficients with the translational

(rotational) friction coefficient 
t (
r = �2
t/3) and thermal
energy kBT = �, Ut =

∑
j U (rij), and v0 = f0/
t is a constant

self-propelling velocity. In Eq. 7, � and � refer to the Gaussian-
distributed white noises of zero mean and unit variance. In
simulations, we take � = 2, kBT = 1, and 
t = 100, and
other physical quantities are accordingly reduced. Particularly,
the surface tensions 
 are reduced by 2kBT /�, unless stated
otherwise. We parameterize our system with Péclet number
Pe = 3v0/(�Dr) and the mean density �0 = N/(lx ly), and
set lx/ly ≈ 6 to encourage the coexisting dense phase to span
the shorter dimension. To reach the steady state quickly, the
particles are initially arranged in a slab with a hexagonal close-
packed structure.

To evolve the system, Eq. 7 is integrated using the Euler
scheme with a time step dt = 2 × 10−3, and each run lasts
5 × 108 time steps at least (after a relaxation of 5 × 107 time
steps, ensuring that the system reaches the steady state). Note that
the intrinsic pressure used to calculate the 
 consists of the ideal-
gas pressure and the one due to interparticle interactions, the
latter of which can be computed from the cross-correlation of the
connecting vector between two particles and the corresponding
pair force (16).

Fig. 2A shows a snapshot of the gas–liquid phase separation,
and Fig. 2 B and C are the corresponding profiles of density
and local polarization along the x axis, respectively. The density
difference between the bulk gas and liquid of the ABPs means
a difference in the intrinsic pressure, which is balanced by f0M ,
as demonstrated in SI Appendix. Using Eq. 6, we compute the
active surface tension for varying Pe realized by tuning the self-
propelling velocity at a fixed mean density �0 = 0.175. The
result in Fig. 3 shows that the 
 is much larger than zero and
increases with Pe. This significantly positive 
 is probably caused
by the great polarization-induced force occurring in the surface
region. A positive 
 is consistent with the stable MIPS of the
ABPs, as expected intuitively. Thus, we recover the traditional
knowledge that a stable surface even in active systems should have
a positive mechanical surface tension.

To better compare with the surface tension previously quan-
tified via the active pressure, we also simulate the MIPS system
having the same parameters as those employed by Bialké et al.
(16). In this case, the computed 
 from Eq. 6 is still signifi-
cantly positive, 
 ≈ 1,067, in striking contrast to the largely
negative surface tension, 
 ≈ −475, obtained by Bialké et al.
(16). Furthermore, we separately employ the schemes of Bialké
et al. (16) and Omar et al. (20) to calculate 
 for our system with

A

B C

Fig. 2. MIPS of the ABPs at Pe = 160 and the mean density �0 = 0.175. (A)
A typical snapshot, (B) the time-averaged density profile, and (C) polarization
profile in a single run.

PNAS 2025 Vol. 122 No. 29 e2505010122 https://doi.org/10.1073/pnas.2505010122 3 of 6
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Fig. 3. Active surface tension 
 in the MIPS as a function of Pe, obtained
from the simulation based on Eq. 6. The data points with low and medium
activities (from Pe = 80 to Pe = 120) are the averages over 10 independent
measurements, while the results for high activity (Pe = 140 and Pe = 160)
correspond to the averages of 6 independent simulations. Error bars denote
the SDs.

Pe = 120. The former still yields a significantly negative surface
tension, 
 ≈ −883; while, as expected, the latter leads to a near-
zero surface tension, 
 ≈ 0.016, which is nondimensionalized in
the same way as done in ref. 20.
Droplet. Based on the mechanical definition of surface tension in
the framework of intrinsic pressure, we have obtained positive 

for the planar active interface. Next, we show that the significantly
positive 
 is consistent with the mechanical stability of the active
interface. To this end, we first simulate a steady-state droplet of
radiusR encompassed by the coexisting gas within a square box, as
illustrated in Fig. 4A. The surface of the isotropic circular droplet
is in mechanical equilibrium, and the forces on a differential
segment of the surface are depicted in Fig. 4B. Considering the
emergence of the polarization force, the mechanical balance on

A B

C D

Fig. 4. (A) Snapshot of a steady-state active droplet encompassed by the
coexisting gas at Pe = 120. (B) Force analysis of a small arc segment of the
droplet’s surface, with a central angle 2�. Here, the green, blue, black, and
pink arrows represent the gas pressure, liquid pressure, surface tension,
and polarization force f0M(R), respectively. Sketch of a fluctuation-induced
transient bulge (C) and indentation (D) on the macroscopic planar interface
of the MIPS, where the arrows represent the possible particle flows or the
corresponding tangential driving forces.

the surface segment reads

2
 sin � +
∫ �

−�
[f0M(R) + Pg − Pl ]R cos �d� = 0 [8]

with Pl referring to the pressure inside the droplet and f0M(R)
to the polarization force per unit arc length acting on the droplet
surface with a curvature radius R. Upon elimination of sin �,
Eq. 8 is reduced to a generalized Young–Laplace equation,



R

= Pl − Pg − f0M(R). [9]

Eq. 9 provides an independent route to compute the surface
tension. To compare with the aforementioned planar interface
system, we here implement the simulations for a large system
containing N = 300,000 ABPs, such that the radius of the
formed steady-state droplet is much larger than the interface’s
thickness. Considering the costly computations, without loss of
the generality, we only focus on the case of Pe = 120 as a typical
example. Based on the numerically measured quantities for the
droplet system: Pl ≈ 129.6, Pg ≈ 1.0, f0M(R) ≈ 124.0 and
R ≈ 215�, Eq. 9 yields 
 ≈ 1,957. The mechanical equilibrium
of the steady-state droplet surface thus requires a largely positive

 , although its magnitude is approximately twice as large as that
of the planar interface case measured via Eq. 6. This difference in
the magnitude reasonably arises from the curvature effects of the
droplet and the significant fluctuations of the measured M(R). It
should be pointed out that in a recent work (21) Lauersdorf et al.
also employ a similar mechanical equilibrium route to compute

 , but their central formula contains an error and the uncertainty
of their results is too large to determine the sign of 
 .
Fluctuating interface. Besides maintaining the mechanical equi-
librium of the steady-state droplet’s surface, we further demon-
strate that a significantly positive surface tension is also necessary
for stabilizing a fluctuating active interface. Consider a horizontal
planar interface of macroscopically phase-separated ABPs that
has developed a bulge or indentation with a large curvature
radius R due to fluctuations, as sketched in Fig. 4 C and D.
Unlike the steady-state circular droplet, this fluctuation-induced
bulge rapidly relaxes to the stable flat interface. In addition, the
nonuniform curvature of the transient bulge could be expected
to give rise to tangential particle flows along its surface (18, 44),
which may partially suppress the interfacial fluctuations. The
driving force for the tangential flow, that possibly originates from
the nonvanishing tangential polarization, is proportional to the
inhomogeneity of the interface curvature. Thus, the stability of
the fluctuating interface requires the forces on the bulge to meet
the following inequality,

2
 sin � + Fd +
∫ �

−�
[f0M(R) + Pg − Pl ]R cos �d� > 0 [10]

with Fd denoting the contribution from the tangential driving
force. It should be noted that here Pg and Pl refer to the pressures
of the coexisting gas and liquid phases, respectively, separated by
the planar interface.

Given that the indentation has opposite local curvatures
compared to the bulge, due to the symmetry, the mechanical
analysis of the transient indentation thus yields

2
 sin �−Fd +
∫ �

−�
[−f0M(−R)−Pg+Pl ]R cos �d� > 0, [11]

4 of 6 https://doi.org/10.1073/pnas.2505010122 pnas.org
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where f0M(−R) denotes the polarization force per unit arc length
on the indentation, and the curvature dependence of 
 is ignored.
By adding Eqs. 10 to 11 and integrating � out, in the leading-
order approximation, we have


 > [f0M(−R)− f0M(R)]
R
2
≈ [f0M − f0M(R)]R. [12]

Note that M(R) depends on the curvature radius of the surface
and thus differs from the value of M for the flat interface.

The inequality [12] thus gives a lower limit of surface tension
to stabilize the fluctuating interface. If the transient bulge and
the stable droplet have the same curvature radius, their M(R)
would be approximately equal. Then, inserting the measured
polarization of the flat interface, f0M ≈ 126.9, and the above
droplet’s polarization f0M(R) ≈ 124 (radius R ≈ 430) into
Eq. 12, we have 
 > 1247 for Pe = 120. This significantly
positive 
 is in good agreement with the results obtained from
Eqs. 6 and 9, and is needed to maintain a stable planar active
interface of the MIPS.

Discussion

From the analysis above, the large positive 
 can suppress the
interfacial fluctuations and stabilize the active interfaces of the
MIPS; while it seemingly is incompatible with the spontaneous
formation of dynamic bubbles inside the liquid phase (Fig. 2A),
a repeatedly reported phenomenon in the MIPS (29, 45, 46).
This apparent contradiction can be resolved by recognizing that
both 
 and polarization force must be considered concurrently
when examining the emergence of the dynamic cavities in the
MIPS, which is unlike the case for passive bubbles. As detailed in
SI Appendix, the polarization force acting on the bubble surface
can be strong enough to overwhelm the large positive 
 , thereby
enabling the bubble to grow to a significant size before it merges
with other bubbles or leaves the liquid phase. On the other hand,
it should be pointed out that the spontaneous emergence of
dynamic cavities inside the liquid bulk is an intrinsic nature of
the MIPS of repulsive ABPs, reflecting the huge fluctuations in
the coexistent dense phase. The presence of the transient cavities
does not influence the derived expression for the mechanical
surface tension.

Finally, it is instructive to comment on the distinction
between the expressions of mechanical surface tension of the
MIPS derived from the intrinsic pressure and from the active
pressure. Compared to the active pressure-based formula, which
predicts a counterintuitive negative surface tension for the phase-
separated ABPs, the formula we have derived within the intrinsic
pressure framework yields a positive surface tension. This result

aligns with physical intuition and well-established knowledge.
Nevertheless, this does not exclude the usefulness of the active
pressure framework or diminish its mechanical self-consistency
in the torque-free ABP system (28), provided that all relevant
quantities are taken to conform to the framework of active
pressure. More importantly, there is a fundamental difference
in the scope of application between the two frameworks. The
surface tension based on active pressure framework is only limited
to a very special active system, i.e. torque-free spherical ABPs,
where the active pressure is a state function. Otherwise, for more
general active systems with torque, alignment, quorum-sensing
interactions, the active pressure is not a state function and even
the definition of local active pressure is ambiguous, such that
the Kirkwood-Buff-type expression for the surface tension is
inapplicable. In contrast, the framework of intrinsic pressure,
which is inherently a state function, does not suffer from such
limitations and is universally valid for all phase-separated active
systems that evolve according to mechanical equations.

Conclusion

On the basis of the intrinsic pressure, we present an expression
of surface tension of phase-separated active systems from its
mechanical definition. According to the obtained formula, our
simulation measurements show that the surface tension of the
MIPS of the ABPs is significantly positive, in contrast to the
previous studies (16, 20) that reported a largely negative or
a near-zero surface tension. The present results align with the
surface tension of the droplet determined by the modified
Young–Laplace equation and are also strongly supported by the
mechanical stability analysis of the fluctuating active interface of
the MIPS. The positive surface tension is naturally compatible
with the stable MIPS, so our work provides a promising route
to solve the puzzle of negative mechanical surface tension in the
MIPS. Furthermore, our findings are not confined to the ABPs
and can be straightforwardly applied to quantify surface tension
for a wide range of other active systems, thereby paving the way
for exploring diverse active interfacial phenomena.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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