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Disorder hyperuniform (DHU) systems possess a hidden long-range order manifested as the complete
suppression of normalized large-scale density fluctuations like crystals, which endows them with many
unique properties. Here, we demonstrate a new organization mechanism for achieving stable DHU
structures in active-particle systems via investigating the self-assembly of robotic spinners with threefold
symmetric magnetic binding sites up to a heretofore experimentally unattained system size, i.e., with
∼1; 000 robots. The spinners can self-organize into a wide spectrum of actively rotating three-coordinated
network structures, among which a set of stable DHU networks robustly emerge. These DHU networks are
topological transformations of a honeycomb network by continuously introducing the Stone-Wales defects,
which are resulted from the competition between tunable magnetic binding and local twist due to active
rotation of the robots. Our results reveal novel mechanisms for emergent DHU states in active systems and
achieving novel DHU materials with desirable properties.
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Disorder hyperuniformity (DHU) is a recently discov-
ered exotic state of many-body systems [1,2], characterized
by an unusual combination of amorphous local structures
as in liquids or glasses, and a hidden long-range order
manifested as strong suppression of normalized large-scale
density fluctuations like a perfect crystal [1,2]. This unique
“glass-crystal” duality can endow DHU systems with novel
physical properties that are traditionally thought to be
unattainable [3–7]. One example is the discovery of novel
DHUmaterials with tunable large, fully isotropic, complete
photonic [3] and phononic [4] band gaps, enabling new
wave manipulation applications [8–11] and devices [12–
14]. Thus, engineering and experimental realization of
DHU structures serve as a crucial first step in developing
DHU materials with desirable properties.
Despite the fact that DHU states have been observed in a

wide spectrum of physical [15–34] and biological [35–38]
systems across scales, the experimental realization of DHU
materialswith controllable structural features still posesmany

challenges. For example, 3D printing techniques [39] are
limited by resolutions and are typically not scalable.
Achieving DHU states under equilibrium conditions requires
highly complex long-range interactions, which are very
difficult to produce experimentally [40,41]. DHU states
obtained via nonequilibrium routes [42–48] such as random
organization [49–52] andactive fluidization [53–57] typically
do not form stable solid structures for material applications.
Very recently, DHU states in the absorbing phase of active
binary mixtures of nonreciprocally interacting robots (with
N ∼ 50) were experimentally observed [58].
Here, we demonstrate a new organization mechanism for

achieving stable DHU structures in active-particle systems.
Specifically, we report robust experimental realization of a
variety of rotating (i.e., “active”) disordered hyperuniform
network structures via self-organization of magnetic robotic
spinners at a heretofore un-attained system size N, i.e., up to
N ∼ 1; 000 robots. Such a system size allows us to access
much smaller wave numbers compared to previous studies,
which is crucial to accurately ascertaining hyperuniformity.
Each robot possesses three symmetrically distributed mag-
netic binding sites with tunable binding force F and can
rotate (clockwise) with tunable rotation speed ω driven by a
programmable light field (see Fig. 1) [59].
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Using both experiments and simulations, we show the
competition of tunable magnetic binding and rotation-
induced local twist gives rise to a wide spectrum of actively
rotating three-coordinated network structures, among
which a set of stable disordered hyperuniform networks
robustly emerge. These stable DHU networks, which can
be considered as topological transformations of a perfect
honeycomb network by continuously introducing the
Stone-Wales (SW) topological defects [22,25], possess
varying large-scale structural characteristics (e.g, hyper-
uniformity exponents [2]), controlled by the tunable
magnetic force F and rotation speed ω. Moreover, we
demonstrate a robust “phase transition” from nonhyperuni-
form to hyperuniform state induced by decreasing the
rotation speed.
Definition of hyperuniformity—DHU systems possess a

local number variance σ2NðRÞ within a spherical window of
radius R that grows more slowly than the window volume
(∼Rd in d-dimensional space) in the large-R limit [1,2], i.e.,
limR→∞σ

2
NðRÞ=Rd ¼ 0. This is satisfied if the static structure

factor SðkÞ vanishes in the zero-wave-vector limit, i.e.,
limjkj→0 SðkÞ ¼ 0, where k is the wave vector and SðkÞ is
related to the pair-correlation function g2ðrÞ via SðkÞ ¼
1þ ρ

R
e−ik·r½g2ðrÞ − 1�dr and ρ ¼ N=V is the number

density. For statistically isotropic systems, the structure
factor only depends on thewave number k ¼ jkj. The small-
k scaling behavior of SðkÞ, i.e., SðkÞ ∼ kα, where α, called
the hyperuniformity exponent, determines the large-R
asymptotic behavior of σ2NðRÞ ∼ Rβ, based on which all
DHUsystems can be categorized into three classes: σ2NðRÞ ∼
Rd−1 for α > 1 (class I), σ2NðRÞ ∼ Rd−1 lnðRÞ for α ¼ 1

(class II), and σ2NðRÞ ∼ Rd−α for 0 < α < 1 (class III) [2]. By

contrast, a standard nonhyperuniform system (such as a
typical liquid or ideal gas) possesses a scaling σ2NðRÞ ∼ Rd.
Magbots: fundamental building blocks—The magnetic

spinners studied here are coin-sized cylinder-shaped robots
[inset of Fig. 1(a)], which are henceforth referred to as
“Magbots” [59]. A Magbot is composed of a vibration
motor whose vertical vibration, in combination of the tilted
brushes at the bottom, drives the Magbot to rotate clock-
wise (CW) [see Supplemental Material (SM) Sec. 1 [60] ]
and generates diffusive translational motion (SM Sec. 2
[60]). Each Magbot has three “pockets,” symmetrically
distributed on its perimeter, and each can host a freely
rotating magnetic rod, leading to a locally three-coordi-
nated self-assembly structure under favorable conditions
[see Fig. 1(b)]. The magnetic binding force F is tuned by
replacing the magnetic rods.
The Magbots possess light sensors at the bottom, allowing

them to respond to a light intensity field [via an LED array;
see Fig. 1(c)]. The dynamic states of the Magbots are
collected using an overhead low-latency CCD camera.
The homogeneous light field plays a similar role in “temper-
ature”; e.g., increasing light intensity IL leads to faster
rotation speeds ω of the Magbots [see Fig. 1(d) and SM
Sec. 2 [60] ], just as increasing temperature leads to stronger
thermal motions of colloids. As shown below, the tunable
magnetic forces (favoring local order) and the twist effect
due to active rotation (favoring disordered states) provide
two competing effects that give rise to a wide spectrum
actively rotating self-organizing network structures.
Self-organization of Magbots into actively rotating

network structures—We systematically investigate the
self-organization behavior of Magbot systems containing
up to N ∼ 1; 000 robots, which is significantly larger than
previously studied swarm robotic systems [67–70]. We
employ the magnetic binding force F and the rotation speed
ω as control parameters, which respectively play a similar
role of enthalpy and kinetic effects as in thermal systems.
We select three representative values for each parameter,
covering the range of experimentally realizable values of F
and ω.
A representative self-assembly process of N ¼ 500

Magbots for F ¼ 0.52 N and ω ¼ 0.7 rps is shown in
Fig. 2(a) (see also SM videos [60]). As the Magbots move
and collide, they start to form three-coordinated clusters,
which percolate, rearrange, and eventually form a dense,
structurally stable three-coordinated network. In the proc-
ess of self-assembling into a honeycomb lattice [71], the
twist effect due to active rotation of the Magbots frustrates
the ordering of the system, preventing the formation of a
perfect honeycomb network (see Appendix). The self-
organized network is also rotating [Fig. 2(b)], which we
refer to as an “active” network. The experiments are
repeated three times for each set of parameters and for
varying system size. Robust self-organization of three-
coordinated network structures are repeatedly observed.

FIG. 1. (a) Magnetic robot system containing ∼1; 000 spinners,
i.e., the “Magbots” (inset). (b) Threefold symmetric magnetic
binding sites leading to the assembly of an active cluster of three-
coordinated network. (c) An interactive light intensity platform to
control the rotation speed of individual Magbots. (d) Rotation
speed ω vs the intensity IL of the underlying light field.
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Emergence of active hyperuniform networks—We obtain
statistics of the point configurations derived from the net-
work nodes (i.e., the Magbot positions), including the static
structure factor SðkÞ, the number variance σ2NðRÞ, and the
pair-correlation function g2ðrÞ. Figure 3(a) shows a hyper-
uniform network (ω ¼ 0.7 rps and F ¼ 0.52 N) and a
nonhyperuniform network (ω ¼ 2.2 rps and F ¼ 0.52 N).
The hyperuniform network mainly consists of well-defined
six-fold, five-fold, and seven-fold rings of bonded Magbots,
while the nonhyperuniform network contains distorted,
broken rings and large voids (leading to large density
fluctuations).
A closer inspection reveals these hyperuniform networks

contain well-defined Stone-Wales (SW) defects [72]. As
illustrated in Fig. 3(c), a SW defect is generated by a
topological transformation that converts four neighboring
hexagons into two pentagons and two heptagons via a
90 degree bond rotation, leading to five-fold and seven-fold
rings ofMagbots that are stabilized by the relatively stronger
magnetic force F. These SW defects are commonly seen in
atomic 2D materials, including amorphous silica [22] and
graphene [25], which are shown to preserve the hyper-
uniformity. To further illustrate this point, we numerically
generated disordered network structures by continuously
introducing SW defects in an initially perfect honeycomb
network, following Ref. [25] (see SM Sec. 3 [60]). The
amount of the SW defects is quantified via the defect
contraction p, i.e., the number of flipped bonds over the
total number of bonds. Figure 3(b) shows a simulated
network containing SW defects with p ¼ 0.08 that is
hyperuniform and SW transformed network doped with
randomly distributed vacancies, which destroy hyperuni-
formity [73]. In SMSec. 3 [60],weprovide detailed statistics
of these simulated networks and show they can structurally
model the self-organized networks of the Magbots.
Figures 3(d)–3(f) show SðkÞ for the nine sets of control

parameters, grouped according to ω. To quantify the degree

of hyperuniformity, we employ the hyperuniformity index
[2], i.e., H ¼ limk→0SðkÞ=SðkpÞ, where kp is the wave
vector associated with the first and highest peak of SðkÞ.
For a given value of ω, increasing F leads to a stronger
suppression of SðkÞ at k → 0. In the case of ω ¼ 0.7 rps,
the networks with F ¼ 0.52 N and 0.66 N possess H <
10−3 and a hyperuniformity exponent (obtained by fitting
the small-k data of SðkÞ) α ≈ 0.32 and 0.48, respectively,
indicating these networks are hyperuniform to a high
degree. The network with F ¼ 0.45 N possesses H <
10−2 and α ≈ 0.14. For the two larger ω, except for the
network with ω ¼ 1.5 rps and F ¼ 0.66 N that is nearly
hyperuniform (possessing H ∼ 10−2), all of the remaining
active networks are nonhyperuniform, with H ∼ 1.
Figure 3(g) shows g2ðrÞ, characterizing the short-range

correlations. All systems possess a very strong first peak,
corresponding to the three-coordinated local structure due
to magnetic binding. The networks with larger ω have a

FIG. 2. (a) Snapshots showing the self-assembly of N ¼ 500
Magbots with ω ¼ 0.7 rps and F ¼ 0.52 N from an initial
disordered dispersion state to an active rotating network structure.
(b) Illustration of the rotating active assembly structure of the
Magbots.

FIG. 3. (a) Left panel: a hyperuniform network of Magbots
(shown as disks) associated with ω ¼ 0.7 rps and F ¼ 0.52 N
(magnetic bonds are visualized). Right panel: a nonhyperuniform
network associated with ω ¼ 2.2 rps and F ¼ 0.52 N. (b) Simu-
lated network obtained by introducing SW defects (p ¼ 0.10) that
is hyperuniform (left) and a network with both SW defects
(p ¼ 0.10) and vacancies (c ¼ 0.05) that is nonhyperuniform
(right). (c) Illustration of a Stone-Wales (SW) topological trans-
formation; (d)–(f) show, respectively, SðkÞ of the self-assembled
networks at ω ¼ 0.7, 1.5, and 2.2 rps for varying F; (g),(h) show,
respectively, g2ðrÞ and σ2NðRÞ of the networks for varyingω andF.
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faster decay and much smaller peaks at larger distances,
indicating the degradation of the “ring” structures and
emergence of large voids. Figure 3(h) shows σ2NðRÞ of the
nine active networks. The large-R scaling behaviors are
bounded between σ2NðRÞ ∼ R and ∼R2. The hyperuniform
systems associated with ω ¼ 0.7 rps possess the scaling
σ2NðRÞ ∼ Rβ, respectively, with β ≈ 1.51 (for F ¼ 0.66 N),
β ≈ 1.64 (for F ¼ 0.52 N), and β ≈ 1.88 (for F ¼ 0.45 N),
which are consistent with small-k scaling of SðkÞ. The
nonhyperuniform systems possess β ≈ 2.
Origin and robustness of hyperuniformity—How does

hyperuniformity emerge in the self-organized networks? As
shown above, the key structural features leading to DHU are
the SW defects. In the Appendix, we show that these SW
defects are stabilized by the magnetic binding forces F
between the Magbots and destroyed by the local twist due to
the active rotation as the speed ω increases [see Figs. 5(a)
and 5(b)]. Specifically, we analyze the self-organizing
processes associated with distinct F-ω regimes, by quantify-
ing the bond changing rate Γ and the number of bonds nb per
Magbot, which respectively characterizes the dynamics and
structural evolution of the system [see Figs. 5(d) and 5(e)].
These analyses reveal three distinct organizational be-
haviors: nonhyperuniform glasslike state, nonhyperuniform
liquidlike state, and hyperuniform state, corresponding to
binding-dominant, rotation-dominant, and balanced regimes
[see Fig. 5(c) and the Appendix for details].
To further elucidate the role of interactions between the

Magbots, we develop an active-particle model for the
Magbots, which follow the underdamped Langevin equa-
tion

m
dv
dt

¼ Fa þ FI þ Fw − γtv;

I
dω
dt

¼ Ta þ Tm þ Tf − γrω; ð1Þ

where m and I are mass and inertia, v and ω are trans-
lational and angular velocity, Fa and Ta are the active force
and torque, FI is the total interaction force including core
repulsion, magnetic interaction, and friction between the
Magbots, Fw is due to the boundary confinement, Tm and
Tf are torques due to magnetic and friction forces, and γt
and γr are translational and rotational friction coefficients,
respectively (see SM Secs. 5 and 6 [60] for details).
This model allows us to systematically investigate the

mechanism for the DHU networks, involving the competi-
tion between magnetic binding and local twist, beyond the
values explored in the experiments. We select an additional
44 pairs of F and ω values complementary to the
experimental data and numerically investigate the self-
organization of these systems (see SM Sec. 7 [60] for
details). Based on the scaling exponent β for σ2NðRÞ, which
is well-defined in both hyperuniform and nonhyperuniform
cases, we employ the piecewise cubic interpolation and

quadratic polynomial surface fitting to obtain a continuous
function βðF;ωÞ; see SM Sec. 7 [60]. This allows us to
construct a “hyperuniformity phase diagram” as shown in
Fig. 4(a), where hyperuniform and nonhyperuniform
phases are separated by the contour βðF;ωÞ ¼ 2. The
phase diagram reveals that a variety of Class-III DHU
networks possessing distinct structural characteristics [i.e.,
different β∈ ð1.4; 2Þ] robustly emerge in the upper left
region corresponding to the balanced regime between
magnetic binding and activation. These results also indicate
one can controllably achieve distinct stable DHU structures
via tuning F and ω.
Last but not least, we demonstrate the robustness of the

hyperuniform state. We prepare a nonhyperuniform initial
state with F ¼ 0.52 N, which is an unflavored yet meta-
stable configuration under ω ¼ 0.7 rps, i.e., an analog of

FIG. 4. (a) A hyperuniform phase diagram of Magbots on the
scaling exponent β for σ2ðRÞ informed by our experiments and
simulations, where hyperuniform and nonhyperuniform phases
are separated by the contour βðF;ωÞ ¼ 2 (red dashed line).
(b) Transition of the disordered nonhyperuniform to the hyper-
uniform network structure (insets), quantified by the hyper-
uniformity index H in response to the varying ω.
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the kinetically trapped nonequilibrium state. We then
increase ω to 2.2 rps to kinetically activate the system
out of the trap (e.g., breaking the bonds between undesir-
able neighbors), and then decrease ω to 0.7 rps to allow the
Magbots to reorganize and form stable magnetic binding
between the neighbors, which leads to a hyperuniform
network. Figure 4(b) shows the evolution of hyperuniform-
ity index H in response to the varying ω, which clearly
reveals the reorganization of the Magbots to form hyper-
uniform structures.
Using a robotic system, we elucidated a new mechanism

for achieving DHU states via the self-organization of active
systems, involving the competition of reversible binding
and symmetry breaking activation. It is also interesting to
explore mixtures of different Magbot species, e.g., with
different chirality or magnetic forces. The resulting distinct
network structures would give rise to a wide spectrum of
elastic wave propagation characteristics for phononic
applications.
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End Matter

Appendix: Mechanisms for stable DHU networksIn
this section, we describe the mechanisms to achieve the
stable DHU self-organizations. As shown in Fig. 5(a),
the active rotation of Magbots generates local twist that
distorts the alignment of magnetic binding sites. This
misalignment then leads to a magnetic torque, which
competes with the active torque to restore the alignment.
In SM Sec. 6 [60], our simulations and analysis show
that among other local interactions including friction and
repulsive contact force, the magnetic binding and local
twist due to active rotation are the two dominant factors

determining the self-organization behaviors. At low
rotation speed ω, individual Magbots bind together by
the magnetic force F to form rotating clusters. As ω
increases, the twist effect becomes stronger, which
weakens and eventually destroys the “bonds” between
the Magbots [see Fig. 5(b)]. Faster rotation also
significantly increases the impact forces during the
collisions between the clusters/individual Magbots,
frustrating the ordering of the system.
In the binding-dominant regime (e.g., strong F, low ω),

the system tends to form a highly disordered, glasslike
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stable aggregate of Magbots containing holes and defects,
which is nonhyperuniform [Fig. 5(c), left panel]. In the
rotation-dominant regime (e.g., weak F, high ω), the

system is highly dynamic, with clusters constantly forming
and breaking, mimicking a liquidlike state, and is non-
hyperuniform [Fig. 5(c), middle panel]. In a regime where
magnetic binding (magnetic torque) and active twist (active
torque) achieve a delicate balance, the weak bonds are
eliminated and new stronger bonds are formed as the
Magbots locally reorganize and a stable hyperuniform
structure emerges [Fig. 5(c), right panel].
We compute the time-dependent average “bond change

rate” ΓðtÞ for the distinct regimes from experimental data,
defined as number of bond breaking/forming per unit time;
see Fig. 5(d). For the glasslike state [F dominant; see the far
left region of the phase diagram in Fig. 4(a)], Γ remains to
be low during the evolution. For the liquidlike state (ω
dominant; see the lower right region of the phase diagram),
Γ remains to be large during the evolution, indicating the
system is highly dynamic. For the “balanced” regime, Γ is
initially large and gradually decays to a very small value,
indicating the reorganization of the structure through
weak-bond breaking and new-bond formation as discussed
above.
Figure 5(e) quantifies the structural evolution via the

number of bonds per Magbots nbðtÞ from the experimental
data. For DHU networks, nb ¼ 3 in the infinite-system
limit and is slightly smaller than 3 in finite systems (due to
boundary effects). On the other hand, voids and vacancies
result in nb significantly smaller than 3. Figure 5(e) shows
that nbðtÞ for the DHU network initially increases (due to
reorganizations that stable SW defects) and asymptotes at a
value slightly smaller than 3. For the other two cases, nbðtÞ
remains much smaller than 3, due to large voids or
vacancies. Together with the structural analysis presented
in the main text, these results provide quantitative evidence
for the aforementioned competition mechanisms leading to
the rich organizing behaviors of the Magbot system.

FIG. 5. (a) Schematic illustration of the competition between
the magnetic binding and local twist due to active rotation of
Magbots. (b) Breaking of a spinner cluster due to the strong local
twist at high rotation speed. (c) Representative configurations of
glasslike, liquidlike, and hyperuniform networks generated in
simulations with N ¼ 900 Magbots. (d) Average bond change
rate for different “competition regimes” between the magnetic
binding forces and active forces. (e) Average bond number per
Magbot as a function of time for different “competition regimes.’.
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