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Anisotropic diffusions in supercooled liquids
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Using isoconfigurational ensemble simulations, we investigate the diffusion direction of individual particles
in liquids in two dimensions. We find that the particle diffusion direction on the cage-jumping timescale is not
random in the supercooled regime, and the diffusion anisotropy increases with decreasing temperature. Analyses
of the simulations and colloidal experiments show that the diffusion anisotropy originates from the rise of the
anisotropic local potential energy landscape. Particles prefer to move in directions with soft local stiffness during
structural rearrangements. The structural evolution in supercooled liquids can thus be probabilistically predicted
from the potential energy landscape that is determined by local structures.
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I. INTRODUCTION

Diffusion in normal liquids can be well modeled as random
walks, with constant diffusion rates and random diffusion
directions. In supercooled liquids or glasses, however, the
diffusion rates become spatially heterogeneous, despite prac-
tically indistinguishable structures from those of equilibrium
liquids. Many efforts have been made to understand this pecu-
liar dynamical phenomenon in glassy systems [1-7]. Using
isoconfigurational ensemble simulations, Widmer-Cooper,
et al. confirm that the dynamical heterogeneity is inherently
related to the structures of glasses [8]. Structural order pa-
rameters, including two-body structural entropy S, [9-11],
medium-range crystalline order ¢ [9,12,13], and local pack-
ing order ® [14], have been shown to correlate with particle
mobilities in different systems. Most studies on the dynamics
of glassy systems focus primarily on the rate of diffusion of
the constituent particles, while the direction of diffusion is
usually assumed to be completely random and unpredictable.
On the other hand, some evidence suggests that particles in
systems of slow dynamics may prefer to move in certain
directions depending on local structures. For example, Chen,
et al. find that particles in colloidal glasses tend to follow
the direction of low energy soft modes during rearrangements
[15,16]. In jammed granular packings, particles move toward
the center of the local Voronoi polyhedron under external
forces [17]. More recently, Xia, et al. discover that the orien-
tational structural orders actually have greater impact on local
dynamics than translational orders [18]. It is therefore rea-
sonable to expect that the anisotropy in local structures may
influence the direction of particle diffusions in supercooled
liquids.

Structure-based prediction of relaxation details for individ-
ual particles in glassy materials, even only probabilistically, is
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significant, as it enables one not only to map out the evolution
of a system with some degree of confidence, but to obtain
a more realistic estimation for the distribution of configura-
tions. However, identification of the diffusion anisotropy in
supercooled liquids or glasses in experiments is challenging,
because under thermal fluctuations the direction of motion in
a single observation is not always the most likely direction
under the same condition, and it is practically impossible to
repeat an experiment with precisely the same initial configura-
tions. Isoconfigurational ensemble simulations [8,14] provide
an ideal solution for this difficulty by randomizing the initial
momenta of individual particles in systems of identical ini-
tial structures, and reveal different evolutionary paths of the
system.

In this paper, we investigate the directions of diffusion for
particles in two-dimensional supercooled liquids by isocon-
figurational ensemble simulations and colloidal experiments.
We find that anisotropy in particle diffusions begins to develop
in the supercooled regime, and increases with decreasing
temperature. This anisotropy is most pronounced on the cage-
jumping timescale, when the local structures are qualitatively
changed. During cage jumping, particles are more likely to
move in the directions with softer energy barriers. This is
similar to the observation that fast dynamics are spatially
correlated to low energy soft modes. However, diffusion
anisotropy is not spatially correlated with the rate of dynam-
ics. Our study reveals that the glassy dynamics contains more
information than simply being fast or slow, and it is possible
to probabilistically predict the evolution of glass structures.

II. SIMULATIONS AND EXPERIMENTS

We perform molecular dynamics simulations of a binary
liquid in two dimensions [19,20]. The system consists of a
mixture of particles of two species, A and B. The number
ratio between A and B is 0.65:0.35. The mass of all the parti-
cles is m. The interaction potential is Vg = 4€4[(00p/ 2 —
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(aaﬂ/r)6] where €45 = 1.5€44, €pp = 0.5€44, 04 = 0.8044,
and oppg = 0.88044. The simulations are performed in a
square box of side length L = 29.34 with a total of 1000
particles under periodic boundary conditions. The sys-
tem is first slowly cooled down (at the rate of —107°)
from an equilibrium state at a sufficiently high tempera-
ture (7o = 1.5) to the target temperature 7, = {0.20, 0.30,
0.35, 0.40, 0.50, 0.60}. The system is then allowed to equi-
librate at 7, before being quenched to the nearest inherent
structure using the FIRE algorithm [21]. The configuration
thus obtained is used as the initial configuration for the iso-
configurational ensemble simulations at 7,. For each initial
configuration, 5000 isoconfigurational ensemble simulations
are performed with random initial momenta drawn from a
Maxwell-Boltzmann distribution for each particle.

In addition to simulations, we also perform col-
loidal experiments using temperature-sensitive poly(V-
isopropylacrylamide) (PNIPAM) particles. The samples con-
sist of a binary mixture of PNIPAM colloids confined between
two coverslips, forming a monolayer. The size ratio of these
two types of particles is ~1.4 and the number ratio is ~1. The
packing fractions of the samples can be increased in situ by
decreasing the temperature due to the thermal sensitivity of
PNIPAM colloids [22]. The samples are continuously imaged
using standard bright field microscopy for 1000 s at 60 fps.
The trajectories of all particles are extracted using particle
tracking software with a spatial resolution of 220 nm [23].

III. RESULTS

From the isoconfigurational ensemble simulations, we
obtain 5000 trajectories for each particle under the same
initial configuration. We examine the anisotropy in the po-
sitional distributions of individual particles at different cross
sections of time. For perfectly isotropic diffusions, the posi-
tional distribution of an individual particle uniformly spreads
out along all directions. For anisotropic diffusions, on the
other hand, mirror symmetry is broken for certain directions.
Specifically, we employ the skewness of the distribution,
s5;(0, 1), to quantify the asymmetry in the positional distribu-
tion of a particle along a certain direction 6 at time ¢, with 0
being the angle relative to the x axis. The definition of s;(6, 1)
is

((xir0 — (Xir0))%)
<(xi,t,6 - (-xi,t,0>)2)3/2.

Here, x;, ¢ is the projection of particle i’s position at time ¢ on
direction 6, and (...) represents the average over all the isocon-
figurational runs. s;(0, t) is a dynamic quantity that takes into
account many possible trajectories under the same condition.
For isotropic distributions, s;(6, t) is zero for all 6. For a given
t, the 6 with the largest s,(0, t) or s, ;(t) indicates the direc-
tion along which the distribution of particle positions is most
uneven. The colored contour plot in Fig. 1(a) shows an ex-
ample of the distribution of positions extracted from the 5000
trajectories of the same particle at time ¢. The purple arrow
indicates the direction along which the projected distribution
is most skewed, as measured by s;(0, ¢). The distribution of
the projected positions along the most skewed direction is
plotted in Fig. 1(b), with clear asymmetry with respect to the
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FIG. 1. (a) Positional distribution of a particle from isoconfigura-
tional simulations (colored contour). The purple arrow indicates the
direction where the distribution is most skewed. (b) The frequency
distribution of the projections of the end points along the most
skewed direction.

averaged position. When averaged over all the particles, the
skewness S,,() = (sm,i(¢)); represents the overall degree of
diffusion anisotropy in the system at time .

Figure 2 plots the S,,(¢) as a function of time for differ-
ent temperatures (solid lines). The anisotropy is low at short
times, as the initial momenta for each particle are random
in isoconfigurational simulations. The diffusion anisotropy
increases with time and peaks around the cage-jumping
timescale, indicated by the peak in the non-Gaussian pa-
rameter. The non-Gaussian parameter is defined as o, (f) =

% — 1 with Ax being the particle displacement during
time interval ¢ [3,24-26]. The peaks in the skewness indicate
that the particle hopping directions are no longer random.
Only after many successive hoppings, the random walk fea-
tures of particle diffusions are recovered, when S,,(¢) begins
to decrease at longer timescales. The diffusion anisotropy
increases with decreasing temperature, as the anisotropy in
the local potential energy landscape becomes significant com-
pared to thermal fluctuations.

We examine the shape of the local potential energy
landscape associated with the cage-jumping events in our
simulations. We first determined the cage-jumping events by
applying a hopping function to the trajectory of each particle
[27,28]. The hopping function for particle i at time ¢ is defined
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FIG. 2. The average skewness S,,(¢) (solid lines, right axis) and
the dynamical susceptibility x4(¢) (scatterd points, left axis) as a
function of time. Different colors represent different temperatures.
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FIG. 3. The hopping function ppep;(t) of a particle during a
cage-jumping event. p, (red horizontal line) is used to determine the
occurence of a hopping (between [t2, #,.]), and p; (blue horizontal
line) is used to determine the quiescent period before the hopping
(between [tp, t1.]).

as

Phopi(t) = (i — Fnst A3 (G — Gy @)

Here, 7; is the position of particle i, and N and N + 1
are two adjacent time windows joined at time ¢. (...)y and
(...)n+1 represent time averages in the interval N and N + 1,
respectively. The durations of both time intervals are chosen
as the inflection point of the mean squared displacement
(MSD) or 15, on double logarithmic plots [29]. Figure 3 shows
a representative curve of the hopping function of a particle.
During a cage-jumping event, a pronounced peak is observed
in the ppop plot. We use two threshold values p; and p; to
better identify a cage-jumping event and the preceding quies-
cent period. Here p; is chosen as the MSD value at 7, (blue
horizontal line), and p, is chosen as the MSD value on the
timescale of the peak of o (¢) (red horizontal line) [30]. Cage
jumping occurs when phop,i(t) = p2 (t € [t2p, 12.]), Where 12,
and #,, indicate the beginning and the end of the hopping
respectively (red dashed lines). Similarly, we define a qui-
escent period immediately before the hopping for pyep,i(f) <
p1 (t € [t1p, t1e]) (blue dashed lines), when the particle fluctu-
ates around an equilibrium position. Local structures around
the particle are relatively stable during the quiescent period,
and the local potential energy landscape can be mapped out by
measuring the probability distribution around the equilibrium
position. We define the positional fluctuation of particle i as
AX; = X; — (%;);, where t, is the duration of the quiescent pe-
riod, and X; is the position vector of particle i. The projection
of AX; along a certain direction 0 is then Ax; ¢. Under the har-

monic approximation, the probability density of Ax; o follows

kio AX% A
2%ksT 7

is the stiffness coefficient of the potential

the Boltzmann distribution with P;(Ax;g) o exp(—

kgT
(AxZy)

energy along direction 6. k; y measures the resistance a parti-
cle meets when moving toward direction 6. Figure 4(a) plots
the angular distribution of k; ¢ of a randomly selected particle,
where anisotropy is evident.

where k; o =

1.50% T

FIG. 4. Anisotropy in local potential energy landscapes. (a) The
angular distribution of a particle’s stiffness ky. The left vertical axis
represents the radial coordinate. (b) Averaged angular anisotropy of
the local potential energy landscape as a function of temperature in
simulations.

The cage-jumping probability in a certain direction is di-
rectly related to the stiffness anisotropy in local structures,
with particles more likely to overcome softer barriers. We can
thus define an expected relative probability along direction 6
at a given temperature as

Py expect = Poexp(—kpa® /2kpT) 3)

where kg is the Boltzmann constant, 7 is the temperature, a is
the typical cage-jumping length scale chosen to be half of the
particle radius, and Py = ), exp(—kga2 /2kpT) is a normal-
ization factor. The anisotropy of Py expect can be evaluated by
its angular fluctuation:

Pﬁz,expect)e - (PO,expect>§

o2

“

<P9,expect)5

Figure 4(b) plots the angular anisotropy of local potential
energy landscapes averaged over all particles (o) at different
temperatures in simulations. The averaged anisotropy in the
local potential energy landscape decreases with temperature,
in agreement with the temperature dependence of diffusion
anisotropy observed in Fig. 2.

Particle-level correlations between stiffness anisotropy and
diffusion anisotropy can be evaluated by comparing the dis-
tributions of displacement directions during cage-jumping
events and the expected probability probability defined by
Eq. (3). The expected cage-jumping probability distribution
Py expect 18 first compared to a baseline of uniform random dis-
tribution Py random = 1/120, as the directions are partitioned
into 120 sectors in our current work. The directions where
Py expect > Po random are defined as favored directions, or ©,
and the expected probability of cage jumping in favored
directions is Pexpect(©) = Y gce Po.expect- The probability of
actual jumping events in the directions of ®, Pyeya(®), can
be obtained by averaging over a large number of observations.
Poctwal (®) > Prandom (®) indicates that particles tend to move
in the directions favored by stiffness distributions. And in the
case where the cage jumping always occurs in the favored
directions, we have Pica(©) = Pexpeet (©). Therefore, we can
define a correlation coefficient that measures the predicting
power of Py expect, With

R = Pactual(®) - Prandom(®) ] (5)
Pexpect(®) - Prandom(®)
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FIG. 5. Correlation coefficient between cage-jumping directions
and the expected directions from local stiffness distributions in the
simulations (blue squares) and experiments (red circles) as a function
of temperature 7' or packing fraction ¢.

R =0 when the directions of cage jumping are completely
random, and R =1 when the directions of cage jumping
are determined by the expected probability from the local
potential energy landscape, or structures. Figure 5 plots the
correlation coefficient in the simulations (blue squares) and
experiments (red circles) as a function of temperature or
packing fraction. As expected, the predicting power of the
local potential energy landscape increases with decreasing
temperature or increasing packing fraction. In particular, at
the lowest temperature, the correlation coefficient is close to
60%, which is significant considering the stochastic nature of
particle motion in liquids and glasses.

In our simulations, the anisotropy of diffusion is not
spatially correlated to the rate of diffusion, despite both
being connected to the softness in the potential energy land-
scape. We employ the dynamic propensity to measure the
diffusion rate of individual particles. The dynamic propen-
sity is defined as h;(¢r) = ([#;(t) — 7:(0)]?)isoc, Which is the
ensemble-averaged mean squared displacement of a particle
[8,14]. Figure 6 shows the spatial distribution of s, ;(t,,) and
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hi(t,,) for temperature 7, = 0.3. Here t,, is chosen to be the
time when S,,(¢) reaches the peak. The spatial distribution
of the propensity is highly correlated, with large clusters of
high propensity regions, in agreement with previous reports
[25,31-36]. On the other hand, the spatial distribution of
the skewness is much more scattered, with high skewness
regions uniformly distributed in the system. The different spa-
tial distributions of the diffusion anisotropy and the dynamic
propensity reflect the different aspects of the local energy
landscape from which they originate. The dynamic propensity
depends on the heterogeneity of the potential energy land-
scape on large length scales, while the diffusion anisotropy
depends on the shape of the local energy landscape. These
two characteristics of the local energy landscape are not nec-
essarily correlated. For example, a liquidlike region may have
similarly low energy barriers in all directions, while a particle
may be trapped in a highly anisotropic region where even the
softest barriers are still too high to overcome in a short period
of time.

In addition to decoupled spatial distributions between
diffusion anisotropy and diffusion rate, the characteristic
timescales of these dynamic properties are also completely
separated. The symbols in Fig. 2 show the ensemble-averaged
dynamical susceptibility x4 and diffusion anisotropy S, as a
function of time at different temperatures. x4 is defined as

1
1) = <@ O) e = (@] ©

where Q,,(t) = va exp(— AZ'Z(’) ), Ax;(t) is the displacement
of particle i in a time window of ¢, and d is a preselected
length scale which is chosen to be the first peak of the pair
correlation function g(r). This definition of x4 is similar to
the one commonly used in glassy systems, except that both
Q,zn(t) and Q,,(¢) are ensemble averaged over 5000 individual
runs from the same initial configuration. For all the temper-
atures, the diffusion anisotropy peaks at timescales one or
two orders of magnitude shorter than that for the dynamical
susceptibility. Remarkably, when diffusion orientations are
most anisotropic, the diffusion rate is spatially homogeneous,
and when the diffusion rate is most heterogeneous, diffu-
sions orientations are almost isotropic. Therefore, anisotropic
diffusions do not necessarily lead to spatially heterogeneous
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FIG. 6. The spatial distributions of the maximum skewness s,,; (a) and dynamic propensity /; (b) in isoconfigurational simulations. The
temperature is 7, = 0.3, and the timescale 7, is the time when S,,(¢) reaches the peak.
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dynamics, and diffusion anisotropy cannot be readily deduced
from the observed dynamical heterogeneity.

IV. CONCLUSIONS

In conclusion, using isoconfigurational ensemble simula-
tions and colloidal experiments, we show that as the system
enters the supercooled regime, not only does the rate of
diffusion become spatially heterogeneous, but the diffusion
directions for individual particles are also anisotropic. The dy-
namical heterogeneity and diffusion anisotropy originate from
the complex energy landscape at different length scales, which
begins to develop in supercooled liquids. The rate of diffusion
is faster in regions of lower energy barriers, while local hop-
pings prefer directions with relatively soft constraints. As the
shape of the energy landscape can, in principle, be inferred
from local structures, the evolution of the structure in super-
cooled liquids can be predicted probabilistically by estimating

the hopping probability and the likely hopping directions for
each particle. In particular, particles with low energy barriers
for rearrangement and high hopping anisotropy contribute
the most to the changes of system configurations, and may
hold the key to understanding the evolution of structures and
dynamics in supercooled liquids.
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